Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. The ...

Simulation of a Micro-Analytical Device for Adsorbing Substances from a Fluid

R. Winz1, A. de los Rios Gonzalez2, E. von Lieres3, M. Schmittel2, and W. Wiechert1
1Department of Simulation, University of Siegen, Siegen, Germany
2Department of Organic Chemistry, University of Siegen, Siegen, Germany
3Institute of Biotechnology, Research Centre Jülich, Jülich, Germany

T- or Y-shaped microfluidic channels are chemical measurement devices that have become popular in recent years. Using such microdevices gives a better control of the fluid behavior and the chemical reaction kinetics, due to the small quantity of fluid.The concept of the T-Sensor as state-of-the-art is used to determine coupled processes of diffusion and reaction within a small-scaled system on a ...

A Magnetically Driven Micro-Mixing Device and its Numerical Analysis

A. M. Morega1, J. C. Ordonez2, and M. Morega1
1Politehnica University of Bucharest, Bucharest, Romania
2Florida State University, Tallahassee, FL, USA

In this paper, we present a FEM model of a mixing MEMS μTAS device. A quasistatic magnetic field, produced by sequentially switched DC currents advected through conductors embedded in the device substrate beneath the flow channel, is used to mix the working magnetic fluid, while it is forced to flow through a rib walled channel. The body forces in the magnetized fluid perturb the otherwise ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

Hybrid Design Electrothermal Polymeric Microgripper with Integrated Force Sensor

V. Vidyaa[1]
[1]Jawahar Engineering College, Affliated to Anna University, Chennai, Tamil Nadu, India

Microgrippers are typical MEMS devices used to pick, hold and transport micro-objects. Microgrippers are widely used in the field of micro-assembly, micro-surgery and manipulation of micro-particles. Thermal microgrippers are widely used for large displacement, high accuracy and repeatability. In this paper, a hybrid design electrothermal microgripper (Figure 1), based on Poly Methyl ...

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically manifested by instability in the calculation and a failure of the model to converge. This paper presents a new approach ...

Simulation of Topology Optimized Electrothermal Microgrippers

O. Sardan[1], D. Petersen[1], O. Sigmund[2], and P. Boggild[1]
[1]DTU Nanotech, Denmark
[2]DTU Mechanical Engineering, Denmark

In this work, electrothermal microgrippers designed using topology optimization are modeled. The microgrippers are composed of two 5 μm-thick polysilicon actuators facing each other. The gap between the actuators are 2 μm in the initial state and the microgrippers are able to both fully close and further open this gap. The operation principle of the actuators is quite similar to that of a ...

Quick Search