Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Experiments and Simulations for Optical Controlled Thermal Management on the Nanometer Length Scale

F. Garwe1, U. Bauerschäfer2, A. Csaki1, A. Steinbrück1, A. Weise3, W. Paa1, and W. Fritzsche1
1Institute of Photonic Technology Jena, Jena, Germany
2GmBU, Halle, Germany
3Institute of Human Genetics and Anthropology, Friedrich Schiller University, Jena, Germany

We show experimentally that the energy of femtosecond laserlight pulses with specific wavelength can be very efficiently absorbed by 30 nanometer gold nanospheres without ablation or destruction.In this way, nanospheres are usable as heat conversion tools on the nanometer length scale. The reason is that excited plasmon-polariton resonances are damped by electron-electron, electron-phonon, ...

Reliability Testing for the Next Generation of Microelectronic Devices

J. Plawsky, W. Gill, M. Riley, J. Borja, and B. Williams
Rensselaer Polytechnic Institute, Troy, NY, USA

Understanding and predicting the reliability of new generations of high and low-k dielectrics is increasingly important for gate oxides and interlayer dielectrics as both films have become thinner and scaling of device operating voltages has not kept pace with the decrease in the size of the dielectrics. We have developed a series of COMSOL-based mass transfer-based models that have proven to ...

Microfluidic Design of Neuron-MOSFET based on ISFET

A. Jain[1], and A. Garg[2]
[1]BITS Pilani, Goa, India
[2]Bhartiya Vidyapeeth College, New Delhi, India

In this paper we suggest a device which combines the operation of a neuron-MOS and an ISFET. An ISFET is an ion-sensitive field effect transistor used to measure ion concentrations in a solution; when the ion concentration changes, the current through the transistor changes accordingly. A voltage between substrate and the oxide surfaces arises due to an ions sheath. It contains a conventional ...

Exploiting New Features of COMSOL Version 4 on Conjugate Heat Transfer Problems

J.D. Freels[1], I.T. Bodey[2], and R.V. Arimilli[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]University of Tennessee, Knoxville, TN, USA

Recent new releases of COMSOL provide the user with a dramatic new interface from which to interact, and many new features “under the hood” for solving problems more efficiently and with even greater accuracy and consistency than before. This paper will explore several of these new version 4+ features for the conjugate heat transfer class of problems. Our environment is unique in that we ...

Laminar Fluid Flow and Heat Transfer Studies of an Electrical Conducting Fluid Subject to Combined Electric and Magnetic Fields

E. Gutierrez-Miravete[1], T. DePuy[2], and X. Xie[2]
[1]Rensselaer at Hartford, Hartford, CT
[2]Pratt & Whitney, East Hartford, CT

The flow of electrically conducting fluids such as liquid metals is significantly affected by applied electric and magnetic fields. The effect has important industrial applications in metallurgy, nuclear technology and other fields. This paper described results of a series of studies designed to investigate the capabilities of COMSOL Multiphysics to accurately simulate the steady laminar flow ...

Modeling of Different Shaped Micro-Cantilevers Used as Chemical Sensors

G. Louarn, M. Collet, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

In this work, we present the modeling of V-shaped silicon micro-cantilevers. The sensitivity of different V-shaped silicon cantilevers is estimated, as a function of the geometrical dimensions of the cantilever.

Expanding Your Materials Horizons

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc. (COMSOL Certified Consultant), Bloomfield Hills, Michigan, USA

Materials and their related properties are intrinsically fundamental to the creation, development and solution of viable exploratory models when using numerical analysis software. In many cases, simply determining the location, availability and relative accuracy of the necessary material parameters for the physical behavior of even commonly employed design materials can be very difficult and time ...

Numerical Simulation of Crystallinity Distribution Developed In the Extrusion of Thick Walled Polypropylene Pipe

R. D. Wilcox1, and J. Collier2
1Chemistry Department, Lincoln Memorial University, Harrogate, TN, USA
2Chemical Engineering Department, Florida State University, Tallahassee, FL, USA

In a numerical simulation for crystallinity distribution, a 36 cm diameter polypropylene pipe with 3.7 cm wall thickness consisting of 3 subdomains that include a die, cooling box, and take-off section was modeled in a 2D axisymmetric geometry using COMSOL Multiphysics.The generalized heat transfer module was used to solve for the temperature distribution in the flowing melt using conductive and ...

Electro-Thermal Analysis of a Contactor: Comparing the Performance of Two Braze Alloys during the Temperature Rise Test

E. Gutierrez-Miravete[1], and G. Contreras[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Electric Co., Plainville, CT, USA

The purpose of this study was to develop mathematical models of the coupled electro-thermal process in selected, typical contactors that could then be validated and verified by comparing model predictions with the results of previous studies and with experimental data obtained during a temperature rise test. The study employed Finite Element Analysis using COMSOL to simulate coupled ...

Ignition Process of Microplasmas

H. Porteanu, and R. Gesche
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, Germany

Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power GaN transistors. The present work deals with a simulation of the plasma formation after the application of the ...

Quick Search