Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

Modeling Two-Phase Electrophoresis

W. Clark[1], and M. Lindblad[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Two-phase electrophoresis is a separation method that combines aqueous two-phase partitioning with electrophoresis and has promise for large scale recovery of biological products. Aqueous two-phase systems formed by adding two polymers, like dextran and polyethylene glycol, to water provide some separation of dissolved species due to differences in solubility of solutes between the phases. COMSOL ...

Simulation of Electromagnetic Stirrers and Brakes Applied in the Metallurgical Field

C. Mapelli
Politecnico di Milano

The control of the flux within continuous casting systems used in the metallurgical field can be obtained through the application of electromagnetic. The model here has been solved through a linear time-harmonic solver. The results of the electromagnetic model have then been applied to the fluid-mechanics model through volume Lorentz forces.

Modellierung von Dünnschichtzellen Thin Layer Flow Cell Modelling

E. Holzbecher[1], J. Fuhrmann[1], R. Halseid[2], and R.J. Behm[2]
[1] WIAS, Numerische Analysis, Berlin
[2] Universität Ulm, Ulm

Two designs for thin layer flow cells were set up at University of Ulm, Germany, in order to identify parameters describing the kinetics of methanol-oxydation – reactions, to be utilized in fuel cells. Computer models for two designs were constructed using COMSOL Multiphysics. Results from the numerical simulations were used to evaluate the different flow cell designs. The aim to ...

Thermo-fluid-dynamic evaluation of a microsystem to analyse radioactive solutions

G. Janssens-Maenhout
Joint Research Centre Ispra
Ispra, Italy

It has become common place to use micro-electromechanical systems (MEMS) to evaluate the chemical properties of solutions. However, such microchips have not yet been applied to the analysis of radioactive solutions, for the purpose of nuclear safeguards, in the nuclear reprocessing industry. Implementing MEMS in this area results in a reduced volume of the sample to be analysed. This has many ...

Virtual Prototyping

Björn Engquist
Royal Institute of Technology, Stockholm and University of Texas
Austin, USA

Virtual prototyping is used for understanding, verifying, planning, controliing, and optimizing a technical application. It the industrial component computational science and engineering and can be called "the third pillar of modern science". The future of virtual prototyping will be multiscale and multiphysics models and simulations. --------------------------------- Keynote speaker's ...

Convective Movements in an Electrolyser

B. Morel1, P. Namy2, C. Belhomme1, and I. Crassous3
1Comurhex, Pierrelatte, France
2SIMTEC, Grenoble, France
3LI2C, Paris, France

Modeling electrolysers is a challenge because of the strong coupling between electrical, thermal and CFD equations. Indeed the electrical conductivity of the electrolyte varies with the temperature, which in turn depends on the heat dissipated by the Joule effect and anode over-voltage.In the present study, the fluid velocity values are computed near the electrodes using a diphasic level set ...

A non-Conventional use of COMSOL to Solve a Complex 3D Geometrical Problem

J. P. Caire, and F. Jomard
LEPMI, ENSEEG, Saint Martin d'Hères, France

The purpose of this study was the optimization of an industrial furnace from a thermal point of view. Such a cylindrical furnace contains an Al-Mg molten alloy covered by a KCl-NaCl molten salt layer floating on it to prevent alloy evaporation. When tilting the cylindrical furnace, it was necessary to compute the relation between the salt and alloy volumes and the area of the liquid alloy/salt ...

Benchmark between CPO (Charged Particle Optics) and COMSOL Multiphysics

J.-M. Barois, and C. Goulmy
PHOTONIS, Brive, France

Streak tubes are widely used in high-speed signal analysis; they give spatial, temporal and intensity information about one single event. Time resolutions of 0.7 pico-second can be achieved and in that time-domain, PHOTONIS tubes are second-to-none.Applications are numerous and range from plasma physic to femtosecond laser applications. In streak tubes, electrons move from the photocathode to the ...

Exploitation of Laminar Flow for Cell-Based Assays

M. F. Santillo1, and A. G. Ewing1,2
1Department of Chemistry, Pennsylvania State University, University Park, PA, USA
2Department of Chemistry, Göteborg University, Göteborg, Sweden

A microfluidic device for performing multiplexed cell bioassays has been successfully developed. The device takes advantage of laminar flow and hydrodynamic focusing in order to selectively load cells into various culture chambers and address cells with pharmacological agents. Both computational fluid dynamics (CFD) simulations and fluorescence microscopy illustrate how fluid flow can be ...

Quick Search

2701 - 2710 of 3230 First | < Previous | Next > | Last