Per page:
Search

AC/DC & Electromagnetics Blog Posts

POWER Prevents Corona Discharge in Power Lines

June 10, 2014

Modernizing the power grid is a huge undertaking. The power industry is mustering up its vast engineering knowledge base to develop the components and systems that will bring us efficient and reliable electrical power for decades to come. By leveraging highly accurate simulation technology with knowledge gained over decades of analyzing in-service equipment, engineers are creating new designs as well as retrofitting proven technology.

Simulating the Focusing Effect of Magnetic Quadrupoles

May 19, 2014

If you walked into a particle or nuclear physics center, like the world-renowned CERN, you may come across a magnetic quadrupole lens (after security clearance, I would imagine). Here, we’re going to discuss what magnetic quadrupole lenses are and study the focusing effect three consecutive quadrupole assemblies have on B5+ ions traveling through such a lens.

Powerful Packaging for Electronics in Extreme Environments

May 16, 2014

The power electronics industry is responsible for products used by billions of people: smartphones, televisions, certain car parts, and even components in motors and household objects. With such a diverse array of applications, many design requirements are considered during the making of these products, including power and energy density, cost, and customer safety. Arkansas Power Electronics International (APEI), a USA-based company, is refining designs for power packaging to control thermal management in power electronics devices, increase efficiency, and lower cost.

Solving TEAM Problem 7 with the AC/DC Module

May 15, 2014

Have you been looking for software that can solve the Testing Electromagnetic Analysis Methods (TEAM) Problem 7? We solved the problem with COMSOL Multiphysics and the AC/DC Module. Here are the results.

The Electromechanical Response of a Brake Design

May 13, 2014

We have the pleasure of introducing guest blogger, Mark Yeoman of Continuum Blue, who showcases what they can do for clients in the electromechanical brake field. Electromechanical brakes come in various designs, including single to multiple friction-face systems, power-off and power-on types, and those that include permanent magnets. With so many options, how do engineers make the right design choices for their application? With COMSOL Multiphysics, this can easily be done. Here, I will show you how.

Modeling Superconductivity in a YBCO Wire

May 6, 2014

Superconductors are used in applications where high current density and magnetic fields are present — including electric generators, biomagnetic technology, and common products, such as fast digital circuits. Theoretically, an unlimited amount of current can flow through a wire made of a superconducting material. However, what happens to a superconductor as the current density exceeds critical limits? Let’s find out.

Calculate the Force of a One-Sided Magnet

March 21, 2014

When designing magnets, you want to save resources by using as little material as possible, while generating as large of a force as possible on the object in question. To calculate the force of a one-sided magnet, you can use COMSOL Multiphysics and the AC/DC Module.

Plotting Spatial Derivatives of the Magnetic Field

March 5, 2014

Being able to compute the spatial gradients of the magnetic field or magnetic flux density is needed in areas such as radiology, magnetophoresis, and geophysics. One of the most important applications is in the design of magnetic resonance imaging machines, where it’s important to analyze not only the field strength, but also the spatial variation of the field. Today’s blog post demonstrates how to compute and plot the gradients of the magnetic field in 3D electromagnetic simulations in COMSOL Multiphysics.


Explore COMSOL Blog