Studying Manifold Microchannel Heat Sinks with Simulation

Bridget Paulus | May 16, 2016

When an electronic device overheats, it risks starting a fire. Cooling components, such as heat sinks, are designed to prevent this, but can’t always keep up with advancing technology. Simulation offers a solution by illustrating how well various heat sink designs conduct heat and how adding elements like manifold microchannels (MMC) improves performance. Today, we’ll explore how an MMC heat sink operates with simulation.

Phillip Oberdorfer | April 21, 2016

We previously wrote about how engineers at IAV, a leading automotive engineering company, used simulation to reduce sloshing in vehicles. Today, we’ll demonstrate how to set up your own sloshing tank model in COMSOL Multiphysics using a separated two-phase flow model with two fluids that have a large difference in density.


Angela Straccia | March 29, 2016

Are you solving turbulent flow problems in your CFD analyses? Then you may be familiar with the large computation time that can result from difficulties in finding the numerical solution. Such difficulties are caused by nonlinearities that arise in the turbulence model equations. Viscosity ramping can help decrease the computation time by solving for higher viscosities and using the solutions as initial conditions for the problem at lower viscosities. We’ll show you how to implement this technique in COMSOL Multiphysics.


Bridget Cunningham | March 1, 2016

When diagnosed with end-stage renal disease (ESRD), a form of permanent kidney failure, patients must undergo dialysis to replace the blood cleaning function of kidneys. Dialysis requires vascular access, a process where blood is removed, purified, and returned to the patient’s vasculature. Current methods for providing access, however, suffer from high failure rates. Combining CFD simulations with shape optimization techniques provides a way to better understand and predict such failure.


Caty Fairclough | January 4, 2016

Studying fish locomotion enables researchers to design vehicles and robots that can skillfully navigate aquatic environments. Performing such studies requires fluid-structure interaction (FSI) analyses of the fish and their environments. Using COMSOL Multiphysics, researchers from the Università Roma Tre were able to simulate carangiform swimming, a type of fish movement, and accurately evaluate its dynamics.

Phillip Oberdorfer | December 9, 2015

When a vehicle rapidly accelerates or brakes, the liquid within its tanks moves back and forth, producing dynamic forces and splashing — a process known as sloshing. Using COMSOL Multiphysics, a team of simulation engineers at IAV found that these forces could be efficiently reduced through the numerical optimization of the internal wave breakers, without impeding the fluid supply. Today, we’ll explore this force reduction approach and the principles behind it with our own tank geometry example.


Bridget Cunningham | April 18, 2016

Removing bacteria and contaminants from water is an important point of concern for safety reasons. One method of purification involves the use of water treatment basins. CFD modeling provides an efficient route for optimizing the design of these basins to ensure their overall effectiveness. Simulation apps, as we’ll highlight here, are taking things one step further by extending the scope of such modeling capabilities to a much wider audience.


Fabrice Schlegel | March 17, 2016

When you think of a stout beer, one type that may come to mind is Guinness® beer. This stout is very special, noticeable by its dark body and famous white head. The dynamics of the foam alone are interesting enough to write a series of blog posts about. Although I don’t drink Guinness® beer (I’m a fan of IPA), I found the longstanding debate about whether its bubbles are rising or sinking while the beer settles makes an interesting simulation.


Fabrice Schlegel | January 13, 2016

To accurately compute lift and drag forces and optimize any airfoil following the NACA naming convention, COMSOL Multiphysics version 5.2 includes a new example, the NACA Airfoil Optimization app. In this blog post, we discuss how the app can be used for production applications and how you can benefit from using the Application Builder to enhance your own models and apps.


Ed Fontes | December 16, 2015

In COMSOL Multiphysics version 5.2, the CFD and Microfluidics modules include a new fluid flow interface for modeling separated three-phase flow. The model behind this fluid flow interface accounts for surface tension between each pair of fluids, contact angles with the walls, as well as the density and viscosity of each of the fluids. The phase field method computes the shape of the interfaces between the three phases and also accounts for interactions with walls.


Caty Fairclough | December 7, 2015

Microchannels are versatile structures that can be used for thermal management. One way to optimize heat transfer within such systems is by adding a pin fin heat sink to the microchannel configuration. Applying this approach, a team of researchers created a novel pin fin design, analyzing its heat transfer efficiency with COMSOL Multiphysics. They presented their innovative work at the COMSOL Conference 2015 Boston.

1 2 3 6