Chemical

Caty Fairclough | August 6, 2015

Avoiding corrosion in a harsh ocean environment often requires the use of cathodic protection methods. These utilize different tools, such as sacrificial anodes or impressed currents, to help maritime-based industries stay afloat. One such system, impressed current cathodic protection (ICCP), mitigates corrosion by applying an external current to a ship hull. The efficiency of this method depends on factors such as the use of a coated propeller. Here, we use simulation to investigate how coating a propeller affects ICCP efficiency.

Read more ⇢

Post Categories

Pankaj Nerikar | July 20, 2015

Corrosion is a widely encountered issue in the automotive industry. To account for and prevent this problem, industry leaders often run experiments to test the corrosion resistance of vehicles. Simulation, however, offers a simplified approach to addressing this phenomenon in automobiles — one that saves time, money, and resources.

Read more ⇢

Post Categories

Tommy Zavalis | July 14, 2015

Batteries generally operate through numerous processes that depend on even more parameters. How can you find out more about what’s going on within them? One approach is to look at the cell’s electrical impedance. The Lithium-Ion Battery Impedance demo app, available in the Application Gallery, can be used to interpret the impedance of a specific lithium-ion battery design with minimal effort. It can also help parameterize the system, a useful step for setting up accurate time-dependent models in the future.

Read more ⇢
Jennifer Segui | June 11, 2015

At Boeing, innovation comes in the form of modern aircraft such as the 787 Dreamliner, whose body is made up of over 50% carbon fiber composite. While incredibly lightweight and strong, such aircraft composites are not inherently conductive, thus requiring additional protective coatings to mitigate lightning strike damage. Here, we describe how multiphysics simulation is used to evaluate thermal stress and displacement in the protective coatings that undergo temperature fluctuations associated with the typical flight cycle.

Read more ⇢
Ed Fontes | May 12, 2015

Biosensors are the workhorses of the analytical tools used for detailed mechanistic understanding at the molecular level of biological systems. The applications of these analysis tools are countless for the detection of biomolecules in the pharmaceutical, health care, and food industries; agriculture; environmental technologies; and in general for research of biological systems. The biosensor demo app is a good example of an application where non-experts can benefit from accurate multiphysics simulations.

Read more ⇢
Edmund Dickinson | April 22, 2015

You might think you’re a smooth driver — but your engine probably doesn’t. Everyday obstructions like traffic lights and changing speed limits mean that the power demands of a car drivetrain vary rapidly. Since we expect new technologies like hybrid or electric vehicles to match the performance of existing cars in responding instantly to the demands of our right foot, designers need to make sure that this is possible and safe. One part of this involves modeling batteries.

Read more ⇢
Bridget Cunningham | April 2, 2015

In this blog post, we investigate syngas combustion in a round-jet burner using the Reacting Flow interface and the Heat Transfer in Solids interface. The results from this benchmark model are compared to experimental findings.

Read more ⇢
Bridget Cunningham | March 13, 2015

The biological and chemical processes behind the development of biopharmaceuticals have an important effect on product quality. With its ability to deliver quick results at a lower cost, simulation is a valuable resource in studying and optimizing these techniques. Learn how COMSOL Multiphysics can benefit your modeling of biopharmaceutical processes.

Read more ⇢
Bridget Cunningham | February 24, 2015

Continuous stirred tank reactors (CSTRs), or ideal stirred tank reactors, are frequently used in the chemical and biochemical industries. This reactor type operates at steady state and because of its good mixing properties, it is assumed that the composition throughout the reactor is uniform. Using a new model in the Reaction Engineering interface, we can visualize the dynamics within an ideal system of tank reactors.

Read more ⇢
Niklas Rom | February 13, 2015

Many exciting features for chemical engineering modeling were introduced in COMSOL Multiphysics version 5.0. In this blog post, I will discuss the most important updates. There are some new modeling interfaces, such as the Chemistry interface, and some that have been revamped and improved, like the Reaction Engineering interface. To begin with, I will recap the modeling interfaces for reaction engineering and mass transport.

Read more ⇢
Ed Fontes | February 5, 2015

Starting the car on a cold winter morning can be unpleasant if you have not been proactive the night before. When you are unable to start an engine, it is often the battery’s fault. Why is a battery more sensitive than other processes in a car? The answer lies in the battery’s ability to convert chemical energy into electrical energy, with a minimum of heat generation, and the relatively small amounts of thermal energy available at low temperatures.

Read more ⇢
1 2 3 4 5 6