Designing Effective Transdermal Drug Delivery Patches with Simulation

Bridget Paulus | November 29, 2016

Transdermal drug delivery (TDD) patches continuously deliver drugs into the body for a certain amount of time. However, the skin is designed to keep out foreign substances, like drugs. To create a TDD patch that successfully bypasses this barrier, simulation can be used to study drug release and absorption into the skin. To analyze this process, Veryst Engineering created a TDD patch model with the COMSOL Multiphysics® software and compared the results to experimental data.

Read More

Bridget Cunningham | November 17, 2016

Food packaging is often composed of recycled materials, like newspapers or plastic, which may contain residual mineral oil inks. Traces of these potentially hazardous substances leftover from the recycled materials can migrate from the packaging to the stored food. To account for this, one research team developed a numerical model to analyze the migration patterns of mineral oil hydrocarbons for various packaging situations. Compared to experimental studies, their approach offers a more efficient and cost-effective way of optimizing food safety.

Read More

Edmund Dickinson | October 25, 2016

A short circuit in a battery is bad news: the chemical energy stored in the battery is lost as heat, rather than being used to power a device. Short circuits create intense heat, which can degrade battery materials or lead to fires or explosions due to thermal runaway. To avoid conditions that lead to short circuits in devices and ensure that short circuits do not cause unsafe operating conditions, we can study lithium-ion battery designs with the COMSOL Multiphysics® software.

Read More

Caty Fairclough | October 19, 2016

In certain food and pharmaceutical industries, different types of dryers are used to dry heat-sensitive products. Vacuum dryers offer one solution for removing water and organic solvents from these sensitive substances. For optimal vacuum dryer design performance, engineers need to balance the dual needs of a rapid drying time and high-quality end products. To achieve this, you can study the vacuum drying process with the COMSOL Multiphysics® software.

Read More

Bridget Cunningham | October 4, 2016

Environmental demands for greater fuel efficiency and lower emissions have sparked an interest in finding an alternative to traditional spark- and compression-ignition engines. While homogeneous charge compression ignition (HCCI) engines offer a viable solution, significant challenges like maintaining control of ignition timing still remain. With simulation tools like the COMSOL Multiphysics® software, you can analyze the combustion process of an HCCI engine and gain deeper insight into ways to advance ignition control.

Read More

Ed Fontes | September 9, 2016

In recent versions of the COMSOL Multiphysics® software, we’ve added several new multiphysics interfaces that include the constituent interfaces as separate physics interfaces, with the couplings predefined in the model tree’s Multiphysics node. This provides you with the best of both worlds, combining the flexibility of the constituent physics interfaces and the user-friendly nature of the predefined multiphysics couplings. The latest version of COMSOL Multiphysics® — version 5.2a — is no exception with the new Reacting Flow multiphysics interface.

Read More

Caty Fairclough | August 26, 2016

Around the world, trash is added to landfills at an increasingly rapid rate. Since these landfills take up large areas of land and can cause environmental issues, researchers are looking for safer, space-saving solutions. One option is to convert traditional anaerobic landfills into aerobic bioreactor landfills. This conversion process needs to be studied further, which could take years experimentally. For faster results, researchers at the University of Western Ontario used the COMSOL Multiphysics® software to efficiently analyze this process.

Read More

Scott Smith | August 24, 2016

Resistive and capacitive effects are fundamental to the understanding of electrochemical systems. The resistances and capacitances due to mass transfer can be represented through physical equations describing the corresponding fundamental phenomena, like diffusion. Further, when considering the resistive or capacitive behavior of double layers, thin films, and reaction kinetics, such effects can be treated simply through physical conditions relating electrochemical currents and voltages. Lastly, resistances and capacitances from external loading circuits can easily be represented in the COMSOL Multiphysics® software.

Read More

Matteo Lualdi | August 23, 2016

Today, guest blogger Matteo Lualdi of resolvent ApS, a COMSOL Certified Consultant, discusses the benefits of creating a simulation app to analyze a solid oxide fuel cell stack. For many businesses, numerical modeling and simulation are valuable tools at various stages of the design workflow, from product development to optimization. Apps further extend the reach of these tools, hiding complex multiphysics models beneath easy-to-use interfaces. Here’s a look at one such example: a solid oxide fuel cell stack app.

Read More

Caty Fairclough | May 17, 2016

Tubular reactors are commonly used in the chemical industry, where they help with continuous large-scale production. To accurately analyze these devices, we can simulate the tubular reactor’s dissociation process. In this blog post, we compare isothermal and nonisothermal simulation studies. Such studies showcase multiple helpful features from the Chemical Reaction Engineering Module that you can use in your own simulations.

Read More

Bridget Cunningham | April 25, 2016

Behind every glass of beer is a series of steps that deliver its unique taste. Fermentation, the process during which sugars are converted into alcohol, is one of these important steps. With the help of COMSOL Multiphysics, we can study the fermentation process, identifying ways to optimize its efficiency and serve up a better-tasting beer.

Read More


Categories


Tags

1 2 3 8