Designing Accurate EMC/EMI Testing Equipment with RF Modeling

Bridget Cunningham August 14, 2017

Compliance testing is used to ensure that various products, processes, and systems meet standard requirements. Just as important as these tests is the equipment used to perform them. This testing equipment must be designed so that it delivers precise measurements that are reflective of real-world performance. RF modeling is a useful approach to analyzing and optimizing such devices, generating greater confidence in the measurements they obtain. To showcase this, we’ll look at a well-known equipment choice in EMC/EMI testing…

Read More

Categories

Bjorn Sjodin August 8, 2017

The latest version of the AC/DC Module enables you to create electrostatics models that combine wires, surfaces, and solids. The technology is known as the boundary element method and can be used on its own or in combination with finite-element-method-based modeling. In this blog post, let’s see how the new functionality can be used to conveniently set up a model that includes a number of very thin spiral wires.

Read More

Bridget Cunningham August 3, 2017

There are many ways to improve the frequency response of frequency-selective surfaces. However, optimizing these structures can require multiple steps. Every change to a design parameter — unit cell type, polarization, substrate properties, etc. — needs the expertise of simulation engineers. Simulation apps enable those with little or no simulation experience to run analyses for their specific stage of the design process on their own.

Read More

Bridget Cunningham August 1, 2017

Helmholtz coils are used by scientists to generate uniform magnetic fields to study electromagnetism and its characteristics. These devices are used in MRI, spectroscopy, magnetoresistance measurements, and equipment calibrations. Here, we’ll look at what Helmholtz coils are, why they are important, and using a simulation-based approach to their design.

Read More

Categories

Jiyoun Munn July 19, 2017

When simulating electromagnetic devices, a common mistake is putting everything into a model at the same time, including a complicated geometry, complex material properties, and a mixed bag of boundary conditions. This makes the model run for a long time and you might get frustrated when your simulation results are physically wrong, without any clues as to why. Today, we will discuss how to efficiently set up simple RF, microwave, and millimeter-wave circuit models in the COMSOL Multiphysics® software.

Read More

Categories

Bridget Cunningham July 17, 2017

On the morning of March 22, 2006, NASA launched their Space Technology 5 mission. For about three months, miniaturized satellites explored Earth’s magnetic fields collecting high-quality measurements. Beyond gathering scientific data, the mission represents a turning point. Instead of large traditional satellite missions, miniaturized technology is taking precedence in space exploration. And within these systems, MEMS technology could serve as a means of active thermal control. Further improvements are already taking shape with the help of multiphysics simulation.

Read More

Annette Pahl July 5, 2017

Plasma modeling normally requires knowing the electron energy distribution function (EEDF) as well as transport properties like electron mobility and diffusivity. To accurately calculate these quantities with the Boltzmann equation, we must also know the electron density (and possibly the density of all species subject to electron impact reactions). However, the electron (and species densities) are outputs of a plasma model, resulting in a catch-22. Let’s take a look at how to overcome this challenge using an example app.

Read More

Caty Fairclough June 27, 2017

When looking for a cost-effective feed network, engineers can turn to the Butler matrix as a potential solution. This passive beamforming feed network is used with phased array antennas, which have applications in upcoming technologies like 5G. To efficiently analyze and design Butler matrix feed networks, we can turn to the COMSOL Multiphysics® software and the add-on RF Module.

Read More

Categories

Yosuke Mizuyama June 15, 2017

The laser is one of the most useful inventions in modern science, but it is not an easy device to use. Lasers work only when the cavity mirrors are aligned perfectly. Even if a laser is lasing for a while, it can stop all of a sudden. In today’s blog post, we will talk about how to predict laser stability using the ray tracing capabilities in the COMSOL Multiphysics® software.

Read More

Categories

Yosuke Mizuyama June 13, 2017

Ray tracing is an effective tool for high-frequency optics simulations. The Ray Optics Module for the COMSOL Multiphysics® software uses a multiphysics-capable wavefront method for its ray tracing. In this blog post, we’ll explore what makes the ray tracing algorithm in COMSOL Multiphysics distinct from traditional ray tracing algorithms described in standard geometrical optics textbooks and suggest a series of best practices to help you get the most out of your simulation results.

Read More

Categories

Bridget Paulus June 8, 2017

Solar-grade silicon is becoming more popular for applications such as communications and photovoltaics. While it’s important to keep up with this growing demand, the current method of producing solar-grade silicon is energy intensive and expensive. To find a more efficient process, researchers at JPM Silicon GmbH explored a novel method using a microwave furnace. By simulating the internal processes, they aim to optimize their microwave furnace design to produce low-cost solar-grade silicon.

Read More


Categories


Tags

1 2 3 26