Designing Heating Circuits with Multiphysics Simulation

Bridget Paulus February 12, 2019

Heating circuits can be found in airplanes, electronic message boards, medical storage devices, and much more. Like many other heating elements, these circuits work through resistive heating, a multiphysics process involving electric currents, heat transfer, and structural deformation. To account for these phenomena and other key design factors, engineers can create virtual prototypes of heating circuits using the COMSOL Multiphysics® software.

Read More

Thomas Forrister February 6, 2019

A doctor sits down and discusses treatment options with a patient that has coronary artery disease. Typically, a stenting procedure is used to increase blood flow to the heart, but there are complications: The arteries around this patient’s heart have an atypical anatomy. Fortunately, there are self-expanding stents, which can provide the desired fit and even adapt to vessel changes over time. Here, we use simulation to examine how such stents expand to the artery diameter.

Read More

Guest Eric Linvill January 31, 2019

Guest blogger Eric Linvill of Lightness by Design shares how materials modeling provides insight into paperboard formation and bending resistance. Formation is a fundamental physical characteristic of paper that can have profound effects on the production and performance of that paper. The finite element method can be utilized to better understand how formation affects mechanical quality control tests and their results. Using the Lorentzen & Wettre (L&W) bending resistance (15°) test, we investigate how paperboard formation affects bending resistance.

Read More

Henrik Sönnerlind January 30, 2019

You can perform response spectrum analyses with a study type introduced in version 5.4 of the COMSOL Multiphysics® software. In this blog post, we will give an introduction to how you can analyze a structure subjected to a short transient excitation being described by a response spectrum.

Read More

Thomas Forrister January 29, 2019

When you think of fire protection measures, what might come to mind first is the logistics of getting everyone out of the building safely (i.e., without exposure to hazardous smoke, chemicals, and hot temperatures). Supporting these procedures are active measures like alarm and sprinkler systems, and passive measures built into the structure to minimize damage. To ensure that a building is designed with fire protection in mind, engineers can simulate actions on structures exposed to fire.

Read More

Brianne Christopher January 22, 2019

The EPFLoop team took the stage at the COMSOL Conference 2018 Lausanne with their hyperloop pod design, setting it down for the crowd to see. Learn about the different ways that the team of students and faculty from the École Polytechnique Fédérale de Lausanne, led by Mario Paolone and including Nicòlo Riva, Zsófia Sajó, and Dr. Lorenzo Benedetti, used multiphysics simulation to land in the top spot for hyperloop design at the 2018 SpaceX competition.

Read More

Brianne Christopher January 21, 2019

In a fluid-structure interaction (FSI) scenario, the fluid can affect the structure, the structure can affect the fluid flow, or both. When modeling a device that relies on FSI, you may want to simulate one of these options, a combination, or all three. The Fluid-Structure Interaction multiphysics coupling in the COMSOL® software makes it easy to implement FSI in your analyses. In this blog post, we study the flow through a ball check valve for different flow directions and pressures.

Read More

Thomas Forrister January 18, 2019

You just got the latest smartphone, game console, or tablet. Eager to use it, you set it down to read the directions — but your child grabs it and starts shaking it around. The good news is that the device probably still works, as the internal electronic components have to be certified to function after experiencing certain shock loads. To analyze the shock response of an electronic part (like a circuit board), engineers can use numerical modeling.

Read More

James Gaffney January 17, 2019

As the story goes, Archimedes was struggling with a case of suspected golden crown fraud. While taking a bath, inspiration hit: Submerging an object displaces the same amount of water as the object’s volume, so he could expose any dilutions to the gold. Archimedes was so pleased, he yelled “eureka!” But would anyone have heard the now-famous shout? Using simulation, we can evaluate the acoustics of resonant and reverberant enclosed spaces, like bathrooms, and how they respond to fundamental sources.

Read More

Prashant Srivastava January 9, 2019

Various machinery, such as engines, pumps, and turbines, employ components that transmit the load between the solid parts that are in relative motion. Common examples are piston rings, cams, gear teeth, and (of course) bearings. Often, these components are lubricated by maintaining an oil film between the two solid parts to minimize the friction and wear. In this blog post, we look at methods for modeling the fluid friction in lubricated joints.

Read More

Bridget Paulus December 31, 2018

An air ambulance flies overhead, speeding toward a hospital with a life-saving treatment. This “treatment” isn’t a new medicine or machine but an organ on its way to a patient on a transplant list. To keep the organ at just the right temperature during transport, it’s placed inside a special container called a cold or isothermal box. By using simulation, you can analyze the design of these boxes, making sure that they’re reliable for their life-saving purpose.

Read More


Categories


Tags

1 2 3 38