Applying and Interpreting Saint-Venant’s Principle

Henrik Sönnerlind January 22, 2018

All structural engineers use Saint-Venant’s principle, whether actively or subconsciously. You can find various formulations of this principle in most structural mechanics textbooks, but its exact meaning is not obvious. Saint-Venant’s principle tells us that the exact distribution of a load is not important far away from the loaded region, as long as the resultants of the load are correct. In this blog post, we will explore Saint-Venant’s principle, particularly in the context of finite element (FE) analysis.

Model Deforming Objects with the Arbitrary Lagrangian-Eulerian Method

Edmund Dickinson January 17, 2018

As two of the greatest mathematicians to have ever lived, Leonhard Euler and Joseph-Louis Lagrange made numerous contributions to continuum mechanics. Combining their individual descriptions of the subject inspired the arbitrary Lagrangian-Eulerian (ALE) method, a technique that can be used for a multitude of simulation applications. Find out how the work of Euler and Lagrange helped create the ALE method and how it aids your simulations in the COMSOL Multiphysics® software.

Analyzing the Mechanical Behavior of Cells for Biological Applications

GuestBjörn Fallqvist January 11, 2018

Today, guest blogger Björn Fallqvist of Lightness by Design, a COMSOL Certified Consultant, discusses using simulation to provide insight into the mechanical behavior of cells. Biological cells are essential for life as we know it. They not only store and replicate hereditary information in the form of DNA but also are instrumental in biological processes. In most, if not all, of these processes, the mechanical behavior of cells is a main factor in ensuring normal physiological functions.

How to Model Fluid-Structure Interaction in a Water Balloon

Phillip Oberdorfer December 15, 2017

The physics behind filling a water balloon seem simple at first glance, but involve a rather complex interplay of fluid flow and a nonlinear hyperelastic material. Fortunately, it is easy to set up and solve this type of model in the COMSOL Multiphysics® software. Let’s see how…

Analyzing Magnetic Flow Meters for Blood Flow Measurement

Brianne Costa November 24, 2017

Magnetic flow meters are a noninvasive option for measuring blood flow. However, when patients move, displaced blood vessels can affect the sensitivity of the flow meter. Researchers from ABB Corporate Research used multiphysics modeling to study how the displacement of blood vessels in a moving patient impacts the performance of a magnetic flow meter.

How to Use Dispersion Curves to Analyze Fluid-Filled Pipes

Ajit Bhuddi November 8, 2017

Suppose you have a very long system with a constant cross section: a fluid-filled pipe. Modeling this system is computationally expensive and time consuming. Using a guided wave propagation approach, you can model a cross section of the system and compute the guided waves along it. You can represent such waves by means of dispersion curves. Here, we discuss a coupled analysis considering air and water as the internal fluids. We also analyze the system dynamics using dispersion curves.

Have You Heard About the Cocktail Party Problem?

Caty Fairclough November 7, 2017

From cocktail parties to public transit, there are competing sound sources in many everyday environments. If you want to listen to one specific sound, say a friend’s question, in a complex auditory setting, you have to distinguish between the sounds around you and focus on the one of interest. This situation is known as “the cocktail party problem”. Understanding how humans solve this problem can lead to advancements in hearing aid designs.

Keynote Video: Modeling the Multiphysics Behavior of Nuclear Fuel

Bridget Paulus November 6, 2017

Optimizing fuel for nuclear reactors can increase the amount of power they generate, improve their safety, and lower greenhouse gas emissions. However, studying nuclear fuel can be complex, as it involves interactions between multiple physical phenomena. In his keynote talk from the COMSOL Conference 2017 Boston, Andrew Prudil of Canadian Nuclear Laboratories (CNL) discussed using multiphysics models to gain insight into nuclear fuel. If you missed his presentation, find a video recording and summary below.

How to Implement Elastoplasticity in a Model Using External Materials

Mats Danielsson November 2, 2017

In structural mechanics, there may be situations when you want to implement your own material model. The COMSOL Multiphysics® software gives you the option to program your own material model in C code. The compiled code can then be called from the program using the External Material feature. Here, we demonstrate how to implement an external material model and then use it in an example analysis.

Keynote Video: Using Simulation to Develop Reliable Audio Transducers

Caty Fairclough November 1, 2017

You’re listening to music when you bump into your loudspeaker, knocking it off the table. Fortunately, it still works! In his keynote presentation at the COMSOL Conference 2017 Boston, Richard Little discussed how Sonos, Inc. ensures that loudspeakers are durable enough to withstand certain stresses and how they use simulation to improve the robustness of the transducer component. If you missed his talk, you can watch the video recording below, followed by a quick summary of his presentation.

Is That a Ghost? Vibroacoustic Explanations for False Poltergeists

Brianne Costa October 31, 2017

My favorite novel to read around the Halloween season is Stephen King’s It. A common misconception about the book is that “It” is just a scary clown — It is actually the embodiment of whatever you fear most. If what scares you the most is the possibility of ghosts, don’t worry: a researcher used acoustics analysis to explain that whatever scares you this Halloween, like It, is just a trick of the mind (and vibroacoustic effects…)