Simulation-Led Design Is Better and More Accessible than Ever

Bridget Cunningham | July 30, 2015

When first introduced, simulation was utilized by just a handful of R&D specialists. Today, a wide community uses simulation to design products, enabling organizations to address complex designs and optimize their workflows. Now, simulation-led design is made even more accessible thanks to several recent developments.


Caty Fairclough | July 29, 2015

A team of researchers from the Karlsruhe Institute of Technology in Germany has figured out a new simple mathematical technique for designing mechanical cloaks. This type of cloaking has great potential for practical uses, such as protecting buildings from earthquake damage for example.

Temesgen Kindo | July 27, 2015

How do we check if a simulation tool works correctly? One approach is the Method of Manufactured Solutions. The process involves assuming a solution, obtaining source terms and other auxiliary conditions consistent with the assumption, solving the problem with those conditions as inputs to the simulation tool, and comparing the results with the assumed solution. The method is easy to use and very versatile. For example, researchers at Sandia National Laboratories have used it with several in-house codes.

Bettina Schieche | July 22, 2015

You may know of Boreas, the Greek god of North Wind, but did you know that it’s also the name of a German team for Formula 1 in schools? This is no coincidence; it describes their strong will to develop race cars that are “as fast as a storm”. With this spirit and COMSOL Multiphysics, the team won several qualifying races, reached third place in the 2014 world finals, and was honored with the innovation award for Research and Development.


Pankaj Nerikar | July 20, 2015

Corrosion is a widely encountered issue in the automotive industry. To account for and prevent this problem, industry leaders often run experiments to test the corrosion resistance of vehicles. Simulation, however, offers a simplified approach to addressing this phenomenon in automobiles — one that saves time, money, and resources.


Brianne Costa | July 16, 2015

The ancient Japanese art of origami enables you to create many intricate designs out of folded paper. Recently, researchers drew inspiration from this craft to develop a fully functional battery consisting mostly of paper and water. They found that the simple device generates enough energy to power a biosensor.


Nirmal Paudel | July 28, 2015

Magnetic bearings are used in many industrial applications, including power generation, petroleum refinement, turbo machinery, pumps, and flywheel energy storage systems. Unlike mechanical bearings, these types of bearings support moving loads without physical contact through magnetic levitation. Valued for their frictionless operation and ability to run without lubrication, magnetic bearings are a low-maintenance alternative to mechanical bearings — one with a longer lifespan. Learn how to calculate design parameters like magnetic forces, torque, and magnetic stiffness using COMSOL Multiphysics.

Bridget Cunningham | July 23, 2015

3D printing has emerged as a popular manufacturing technique within a number of industries. The growing demand for this method of manufacturing has prompted greater simulation research behind its processes. Engineers at the Manufacturing Technology Centre (MTC) have identified their customers’ interest in a particular additive manufacturing technique known as shaped metal deposition. By building a simulation app, the team is better able to meet the demands of their customers while delivering more efficient and effective simulation results.

Walter Frei | July 21, 2015

When modeling a manufacturing process, such as the heating of an object, it is possible for irreversible damage to occur due to a change in temperature. This may even be a desired step in the process. With the Previous Solution operator, we can model such damage in COMSOL Multiphysics. Here, we will look at the “baking off” of a thin coating on a wafer heated by a laser.


Caty Fairclough | July 17, 2015

Microfluidic systems often rely on valveless pumps, as they are both gentle on the biological material and low in the risk of clogging. However, by design, this type of pump is not suitable for viscous fluids and systems with small length scales or low flow rates. To overcome this limitation, you can introduce a micropump mechanism that converts oscillatory fluid motion into a unidirectional net flow.

Bridget Cunningham | July 15, 2015

Phase change energy storage is an effective approach to conserving thermal energy in a number of applications. An important element in the efficiency of this storage process is the melting rate of the phase-change material, the storage medium. Using the principle of the constructal law as their foundation, a team of researchers sought to advance the performance of these storage systems.

1 13 14 15 16 17 99