# Application Gallery

The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

### 2D Lithium-Ion Battery

The following example is a 2D tutorial model of a lithium-ion battery. The cell geometry is not based on a real application; it is only meant to demonstrate a 2D model setup.

### 1D Isothermal Lithium-Ion Battery

This model demonstrates the Lithium-Ion Battery interface for studying the discharge and charge of a lithium-ion battery for a given set of material properties. The geometry is in one dimension and the model is isothermal. Battery developers can use the model to investigate the influence of various design parameters such as the choice of materials, dimensions, and the particle size distribution ...

### Heterogeneous Lithium-Ion Battery Model

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous models differs from typical battery models, such as the Newman model. In homogeneous models, averaged ...

### Thermal Modeling of a Cylindrical Lithium-Ion Battery in 3D

This example simulates the heat profile in an air-cooled cylindrical battery in 3d. The battery is placed in a matrix in a battery pack. The thermal model is coupled to a 1d-battery model that is used to generate a heat source in the active battery material. The model requires the Batteries & Fuel Cells Module and the Heat Transfer Module

### Diffuse Double Layer

At the electrode-electrolyte interface, there is a thin layer of space charge in a diffuse double layer. This may be of interest when modeling devices such as electrochemical capacitors and nanoelectrodes. This tutorial example shows how to couple the Nernst-Planck equations to the Poisson equation, in order to describe diffuse double layer according to a Gouy-Chapman-Stern model. The physics ...

### Liquid-Cooled Lithium-Ion Battery Pack

This model simulates a temperature profile in a number of cells and cooling fins in a liquid-cooled battery pack. The model solves in 3D and for an operational point during a load cycle. A full 1D electrochemical model for the lithium battery calculates the average heat source.

### Capacity Fade of a Lithium-Ion Battery

Side reactions and degradation processes may lead to a number of undesirable effects, causing capacity loss in lithium-ion batteries. Typically, aging occurs due to multiple complex phenomena and reactions that occur simultaneously at different places in the battery, and the degradation rate varies between certain stages during a load cycle, depending on potential, local concentration, ...

### Thermal Modeling of a Cylindrical Lithium-Ion Battery in 2D

This model example simulates an air-cooled cylindrical 18650 lithium-ion battery during a charge-discharge cycle, followed by a relaxing period. A one-dimensional cell model is used to model the battery cell chemistry, and a two-dimensional axi-symmetrical model is used to model the temperature in the battery.

### Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in electroanalysis. It is used to study the harmonic response of an electrochemical system. A small, sinusoidal variation is applied to the potential at the working electrode, and the resulting current is analyzed in the frequency domain. The real and imaginary components of the impedance give information about the kinetic and ...

### Vanadium Redox Flow Battery

This 2D example of a vanadium flow battery demonstrates how to couple a secondary current distribution model for an ion-exchange membrane to tertiary current distribution models for two different free electrolyte compartments of a flow battery. The *Ion-Exchange Membrane* boundary node specifies a boundary condition where the flux of ions is continuous, but where the electrolyte potential is ...

First
Previous
1–10 of 39