The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Outgassing Pipes

This benchmark model computes the pressure in a system of outgassing pipes with a high aspect ratio. The results are compared with a 1D simulation and a Monte-Carlo simulation of the same system from the literature.

Homopolar Generator 3D

A homopolar generator is composed of an electrically conductive rotating disc placed in a uniform magnetic field that is perpendicular to the plane of rotation. The motion of the conductor through the static magnetic field induces Lorentz currents in the disc. By connecting the outside rim of the disc to the center via a stationary conductor, significant current can be generated. The flow of ...

Geometric Parameter Optimization of a Tuning Fork

This model computes the fundamental eigenfrequency and eigenmode for a tuning fork that is synchronized from Creo Parametric via the LiveLink interface. The length of the fork is then optimized so that the tuning fork sounds the note A, 440 Hz.

Slider Crank Mechanism

This is a benchmark model to test the numerical algorithms in the area of multibody dynamics. This model simulates the dynamic behavior of the slider crank mechanism. This mechanism goes through singular positions during its operation. The acceleration at a point is compared with the results from the reference.

Transverse Modes for a Symmetric Laser Cavity

This model demonstrates how a nonlinear equation system can be setup to solve for the eigenfrequencies of a symmetric laser cavity. The model uses the bidirectional formulation of the Electromagnetic Waves, Beam Envelopes physics interface. The computed eigenfrequencies are verified with values from analytical expressions.

Ultra-high Vacuum, Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a process often used in the Semiconductor industry to grow layers of high-purity solid material on top of a wafer substrate. CVD is achieved using many different techniques and across a range of pressures from atmospheric, to ultrahigh vacuum (UHV/CVD). UHV/CVD is performed at pressures below 10-6 Pa (10-8 Torr), so gas transport is achieved by molecular flow ...

Parameterized Concrete Beam

Reinforced concrete beams are commonly used in modern construction due to their strength and durability. By simulating such beams, engineers can ensure that the resulting structures both perform well and are safe. With simulation apps, engineers of all levels of expertise can analyze and test different designs with ease. The Parameterized Concrete Beam demo app focuses on the structural ...

Optimizing Band Dispersion in an Electroosmotic Flow Through a Curved Microchannel

This model studies the dispersion of neutral species band through curved microchannel in an Electroosmotic flow (EOF) . Using Optimization module, geometric optimization is carried out to minimize the curve-induced dispersion.The central idea is to parametrically represent the geometry by Bézier curves and these geometric parameters are further treated as optimization parameters in the ...

Electrocoating of a Car Door

This example models electrocoating of paint onto a car door in a time-dependent simulation. The deposited paint is highly resistive which results in lowered local deposition rates for coated areas. A primary current distribution in combination with a film resistance model is used to describe the charge transport in the electrolyte. The model is in 3D and uses an imported CAD geometry.

Lamella Mixer

At the macroscopic level, systems usually mix fluids using mechanical actuators or turbulent 3D flow. At the microscale level, however, neither of these approaches is practical or even possible. This model demonstrates the mixing of fluids using laminar-layered flow in a MEMS mixer. This model analyzes the steady-state condition of the fluid flow as well as the convection and diffusion of a ...