Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing of End-winding Corona Protection of Generators by Help of Simulation

M. Wei[1], S. Grossman[1], J. Speck[1]
[1]Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany

The job of designing end-winding corona protection (ECP) system is one of the very important and complex phases for insulation configuration of high voltage rotating machines. This complexity stems on one hand from the highly nonlinear characteristics of the ECP material and on the other hand from the coupled multiphysics phenomena of the involved performance evaluation. Simulation based ECP ...

Simple Disk Piezo Transformer Based Oscillator - new

J. P. Sandoz[1], J. M. Kissling[1]
[1]Institute of Applied Microtechnology, La Chaux-de-Fonds, HE‐ARC, Switzerland

In this contribution we present a COMSOL Multiphysics® example of a disk piezoelectric ceramic transformer (D-PT) coupled with a bipolar NPN transistor to form an auto-oscillator. The comparison between the simulations and the measurements made on our prototype are found to be in good agreement. Having at our disposal a large number of homogenously poled disks, we decided to build and to ...

Optimization of a Rotor Shape for Spherical Actuator with Magnetically Levitating Rotor to Match Octupole Field Distribution

M. Sidz[1], R. Wawrzaszek[1], L. Rossini[2], A. Boletis[3], S. Mingard[3], K. Seweryn[1], E. Onillon[2], M. Strumik[1]
[1]Space Research Centre of PAS, Warsaw, Poland
[2]CSEM Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
[3]Maxon Motor AG, Sachseln, Switzerland

The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution discussed in this work has been proposed and patented by CSEM company. Contrary to conventional ball bearing ...

Electrical Scale-Up of Metallurgical Processes - new

R. Schlanbusch[1], S. A. Halvorsen[1], S. Shinkevich[1], D. Gómez[2]
[1]Teknova, Kristiansand, Norway
[2]Department of Applied Mathematics & ITMATI, Universidade de Santiago de Compostela, La Coruña, Spain

The problem under investigation is electrical scale-up of a generic metallurgical process for primary metal production through resistive heating of slag by electric current, typically supplied by an AC three-phase system. Maxwell’s equations are analyzed revealing that the properties of the solution is determined by the parameter (L/δ)^2, where L is the linear size of the system and δ is the ...

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised in radial direction is generated. This radial field interacts with metallic tube and generates ...

Modeling of High Temperature Superconducting Tapes, Arrays and AC Cables Using COMSOL

O. Chevtchenko
Technical University of Delft, The Netherlands

In this paper we present a set of numerical models created with COMSOL Multiphysics. The set includes quantitative models of a superconducting tape operated at 77 Kelvin, carrying a transport current and exposed to external magnetic field; an array of such tapes and a triaxial high temperature superconducting cable. Similar models were created in the past. However, an advantage of our approach ...

Multiple Solutions in the Theory of DC Glow Discharges

P. Almeida, and M. Benilov
Departamento de Física. Universidade da Madeira, Portugal

It was suggested long ago that a theoretical model of a near-cathode region in a DC glow discharge admits multiple steady-state solutions describing different modes of currrent transfer. Even the most simple self-consistent models should admit such multiple solutions. In the present work, these solutions have been calculated for the first time with COMSOL Multiphysics.

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Transient Analysis of an EMVD Using COMSOL Multiphysics

G.E. Stebner[1], C. Hartwig[1]
[1]Ostfalia University, IMEC, Wolfenbüttel, Germany

In this paper an EMVD (Electro-Mechanical Valve Drive) for combustion engines is redesigned to achieve a fail-safe behavior when power loss occurs. The AC/DC Module and the Moving Mesh interface of COMSOL Multiphysics 4.2 are used to build up a transient model. This model also includes the calculation of eddy currents.

Design Optimisation of an Field Free Point Magnetic Particle Imaging scanner

G. Bringout[1], T.M. Buzug[1]
[1]Institute of Medical Engineering, University of Lübeck, Lübeck, Schleswig-Holstein, Germany

Magnetic Particle Imaging (MPI) is a new imaging technology based on the non-linear magnetisation of magnetic nanoparticles which can be used as a tracer material. In a high speed 1D MPI Device, a sinusoidal signal containing a single frequency generate a time-varying magnetic field via the drive coil. We propose to use a COMSOL Multiphysics® simulation to be able to calculate otherwise hard ...