Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of the Earth's Electromagnetic Clearance System (DEMETER)

J. P. Pothin [1], N. Gosselin [1],
[1] Nexter Systems, France

DEMETER is a magnetic field replicator. This system is designed to deceive anti tank mines. Numerical simulation (using COMSOL Multiphysics® software) allows to indicate DEMETER's performance in various environment and various configurations. The study of the magnetic field provide also an overview of mine-clearing tools disturbances on the field generated by DEMETER.

Prediction of Transformer Load Noise

M. Kavasoglu[1], R. Haettel[1], and C.H. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, Canada

Transformers, as any other industrial products, have to comply with various requirements on noise levels. Three main sources of noise can be identified in transformers: no-load noise or core noise generated by magnetostriction in the core steel laminations, load noise produced by electromagnetic forces in the windings and noise due to auxiliary equipment such as fans and pumps used in the ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single crystalline silicon and mostly are electrostatically actuated. The objective is to design the micromirror to ...

Electrophoretic Focusing and Navigation for Intranasal Target Drug Delivery

X. Si[1]
[1]Calvin College, Grand Rapids, MI, USA

Direct nose-to-brain drug delivery circumvents the blood-brain-barrier and has multiple advantages over intravenous delivery. However, its application is limited by the extremely low delivery efficiency to the olfactory region. This study evaluated the feasibility of targeted drug delivery with electrophoretic forces in a 2D human nose model. COMSOL Multiphysics® AC/DC, CFD, and Particle Tracing ...

Muscle-Electrode Interface Simulation

A. Altamirano, C. Toledo, A. Vera, R. Muñoz, and L. Leija
Centro de Investigacion y Estudios Avanzados
Instituto Politecnico Nacional

In this article, the aim is to study different types and forms of electromyography (EMG) electrodes, for bipolar configuration, and the electric interface with muscle phantom. COMSOL Multiphysics allows modeling shapes and contact surfaces. Surface and needle electrodes will be modeled. A number of different trials and combinations will be presented; exploring different geometric shapes and ...

Optimization of Insulator-Based Dielectrophoretic Devices

M. A. Saucedo-Espinosa [1], M. Rauch [1], B. H. Lapizco-Encinas [2],
[1] Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
[2] Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA

Insulator-based dielectrophoresis (iDEP) employs arrays of electrically insulator posts in a microfluidic device to create dielectrophoretic forces that affect particle movement (Figure 1). The trapping performance of iDEP devices involves a careful balance between electrokinetics (EK) and dielectrophoresis (DEP), where EK is the superposition of electroosmosis (EO) and electrophoresis (EP). The ...

Finite Element Modeling of Eddy Current Probes for CANDU® Fuel Channel Inspection

M. S. Luloff [1], T. W. Krause [2], J. Morelli [1],
[1] Queen's University, Kingston, ON, Canada
[2] Royal Military College of Canada, Kingston, ON, Canada

CANDU® reactor pressure tubes (PT) contain D2O, which is used as a moderator. Surrounding the PTs are gas-filled Calandria Tubes (CT), which thermally isolate the PTs from the moderator surrounding the fuel channels. If the garter springs move apart, the PT will sag into the CT. Under contact conditions, the thermal gradient between the hot PT and cold CT accelerates the ingress of deuterium ...

Evaluation Of AC Loss And Temperature Distribution In High Temperature Superconducting Tape Using COMSOL Multiphysics

G. Konar, and N. Charaborty
Jadavpur University, Kolkata, West Bengal, India

High temperature superconductors (HTS) are promising candidates for electrical power applications. However, the superconductors exhibits energy loss known as AC loss when exposed to time varying external magnetic field and/or transport current. In this paper, AC loss in an elliptical Ag sheathed Bi2223 (HTS) tape is calculated using the time dependent PDE mode of COMSOL Multiphysics. The HTS ...

Simulation of Piezoelectric Transformers with COMSOL

T. Andersen[1], M. A. E. Andersen[1], O. C. Thomsen[1]
[1]DTU Elektro, Technical University of Denmark, Kgs. Lyngby, Denmark

In this work COMSOL is utilized to obtain the Mason lumped parameter model for a piezoelectric transformer (PT) design. The Mason lumped parameters are relevant in the design process of power converters. The magnitude of the impedance is simulated for a specific interleaved multilayer thickness mode PT. The PT design has been prototyped and the measurements results are compared with simulations. ...