Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal current and the receiver coil senses the perturbation of the magnetic fields caused by the eddy currents in the ...

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we ...

Traveling Plasma Wave Levitation of Objects Supported by Coanda Effect - new

R. Eisenschmid[1]
[1]OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling electrostatic field. A simplified plasma model was used to set up an EFD (electro fluid dynamic) approach into a ...

Multiphysics Analysis of Inductive Brazing Process using COMSOL Multiphysics® Software

A. F. Biju[1], A. Pandey [1],
[1] Honeywell Technology Solutions Lab, Bangalore, Karnataka, India

The objective is to analyze temperature rise and distribution in different parts of an inductive brazing process. This process includes multiphysics phenomena - electromagnetic excitation- eddy heating- heat transfer in solids. AC Inductive heating physics coupled to heat transfer in solid including conduction, convection and radiation effects are modeled using COMSOL Multiphysics® Software.


段雁超 [1], 熊秀 [1], 范晓宇 [1],
[1] 西安爱邦雷电与电磁环境实验室,西安,中国

飞行器遭受雷击时会产生多物理效应,包括电磁感应效应、热效应和电磁力效应等。建立三维电磁、电磁-热耦合、电磁-热-力耦合等多种典型模型进行仿真分析,通过对电势、电流、温度、电磁场和力等物理量的分析,研究飞机附着点、雷电防护布局、雷电流分布、金属网/复合材料熔蚀、机舱内电磁场分布、油箱缝隙打火、结构受力等问题。仿真结果在不同程度上可以为飞行器的雷电防护提供重要参考和设计依据。本文以 COMSOL Multiphysics® 多物理场耦合软件为仿真分析工具,建立多种典型问题模型进行计算并对结果分析,说明雷电及其相关问题可以通过仿真分析进行评估和解决。

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We ...

COMSOL Multiphysics Modelling for Measurement Device of Electrical Resistivity in Laboratory Test Cell

C. Rémi, M. Bergeron, and S. Moreau
Antony, France

Bioreactor landfill is based on a homogeneous distribution of the moisture content to increase waste biodegradation. Most of studies have shown that Electrical Resistivity Tomography (ERT) can be a suitable method to study water content variation (2D and 3D). ERT is influenced by many physical parameters and no single relationship with volumetric water content was yet established for Municipal ...

Finite Element Modeling for Inspection of CANDU® Steam Generators - new

S. G. Mokros[1], P. R. Underhill[2], J. Morelli[1], T. W. Krause[2]
[1]Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, Canada
[2]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

Steam generators (SGs) are used in CANDU® nuclear reactors as heat exchangers to convert water into steam using heat generated in the reactor core. Ferrous trefoil broach support structures prevent excessive vibration of thousands of SG tubes. A probe that uses pulsed eddy current (PEC) technology has been designed for inspection of support structures, from within SG tubes, to detect and ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...