Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL News Magazine 2017

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

A Mean Field Approach to Many-particles Effects in Dielectrophoresis

O. Nicotra, and A. La Magna
CNR-IMM Sezione di Catania, Catania, Italy

One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in dielectrophoretic devices. In this contribution we present a new approach based on a drift-diffusion dynamics to study ...

Analyzing Drug Delivery and Osteoblast Growth on a Porous Scaffold in a Perfusion Bioreactor

A. Sun, and S. Murray
Dept. of Biomedical Engineering
UCLA, Los Angeles, CA

Implantable Collagen sponges are used in Spinal Surgery as Drug Delivery Scaffolds. An optimal concentration of growth factor that strikes a balance between bone growth and adverse diffusion effects is difficult to find. The porous sponge also serves as a scaffold for Osteoblast growth, and fluid shear has been shown to mediate biological effects on that cell type. We use COMSOL Multiphysics ...

Modeling Plant Morphodynamics in Predefined COMSOL Multiphysics® Interface

S. Nikolaev[1], A. Trubuil[2]
[1]Institute of cytology and genetics SB RAS, Novosibirsk, Russia
[2]Institut National de la Recherche Agronomique, Jouy-en-Josas, France

We used a predefined COMSOL Multiphysics® interface to imitate biological growth and shape change (morphodynamics). We found a set of parameters that supply observed morphodynamics for an Arabidopsis embryo during its transition from globular to heart stage.

Chemical Reaction Engineering: Difusão com Biotransformação

D. R. M. Vieira [1], S. A. Cardoso [1], A. S. Santos [1],
[1] Universidade Federal do Pará, Pará, Brasil

A biotransformação de substratos utilizando enzimas imobilizadas em nanopartículas presentes num meio fluido (substrato), contido num bioreator CSTR, foi investigada. O software COMSOL Multiphysics foi usado para simular o sistema através do uso das equações de difusão de espécies apropriadas para o consumo do substrato. Nessa investigação, a difusão na superfície da nanopartícula, onde ocorre a ...

Advancing Regulatory Science through Integrative Engineering with COMSOL Multiphysics® Software Modeling

G. Zhang [1]
[1] Department of Bioengineering, Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

The US Food and Drug Administration (FDA) faces significant challenges in its regulatory approval processes due to a lack of relevant science, and many practices are limited by laws enacted in the previous century [1]. Therefore, in recent years, the FDA has identified the need for advancements in regulatory science and innovation. In a broader sense, advancing regulatory science is not just ...

Three-Dimensional Finite Element Modeling of Current Density in Maternal Transthoracic Defibrillation

A. Jeremic[1], J. Potts[2], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada
[2]McMaster University Hospital, Hamilton, ON, Canada

Although the cardiac arrest in pregnancy is a rare event it can have significant impact in terms of age of mother, mortality of unborn children and consequently long-term effect. One of the commonly used procedures in resuscitation is defibrillation. With recent advances in understanding pathophysiologies in pregnant women it became more obvious that previous studies should be extended to ...

Temperature Excursions at the Pulp-Dentin Junction during the Curing of Light-Activated Dental Restorations

M. Jakubinek[1,2], C. Neill[1], C. Felix[3], R. Price[2,3], M. White[1,2]

[1]Departments of Chemistry and Physics, Dalhousie University, Halifax, NS, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, NS, Canada
[3]Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada

Heat produced during the curing of light-activated dental restorations could damage the dental pulp. Given the prevalence of composite restorations and the importance of avoiding injury to the pulp, efforts should be made to minimize the temperature increase that occurs at the pulp-dentin junction during light-curing. In this investigation we develop and evaluate a COMSOL Multiphysics FEM tooth ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Coupled Fluid-Structural Analysis of Heart Mitral Valve

A. Avanzini, and G. Donzella
Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy

The mitral valve apparatus is a complex and refined mechanism located between the left atrium and the left ventricle of the heart which can manifest various kinds of pathologies. In order to support identification of potentially critical conditions resulting from some typical cardiosurgery operations, it is important to develop models of the mitral valve that enable prediction of both stress in ...