Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CO2 capture by means of chemical looping combustion

Pavone, D.
IFP, Lyon, Vernaison, France

In a search of concepts for innovative reactors allowing CO2 capture in gas turbine, monolith based chemical looping combustion has been identified as a promising concept. A precise simulation of the chemical looping combustion in a channel of monolith is developed to define the design rules and the material specifications. The objective is also to evaluate this innovative process in terms of ...

Modeling of an Operando Catalytic Reactor Operated in the Concentration Pulse Mode

S. Pietrzyk, A. Y. Khodakov, and C. Dujardin
Unité Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, Ecole Nationale Supérieure de Chimie de Lille, Ecole Centrale de Lille, Villeneuve d’Ascq, France

Operando reactors are used to study, qualitatively and/or quantitatively, active sites of the catalyst and the intermediates of a catalytic heterogeneous chemical reaction, while the reaction is being carried out ("in situ, on-line catalysis studies"). In the present work, an operando reactor using transmission infra-red (IR) absorption spectroscopy has been used to study the Fischer-Tropsch ...

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

Modeling of Heat and Mass Transport in a Nonlinear Catalytic Bed Reactor

A. Machac [1], R. Henda [2], and B. Nilsson [2]
[1] School of Engineering, Laurentian University, Sudbury, ON, Canada
[2] Lund University, Sweden

Heat and mass transport phenomena in a tubular catalytic bed reactor are numerically investigated. A two-dimensional pseudo-heterogeneous model, accounting for transport in the solid and fluid phases, with axial and radial dispersions, is used to describe the reactor. The calculation results show the development of a hot spot in the reactor. The effects of inlet process conditions are ...

Study of the CO2 Transfer Rate in a Reacting Flow for the Refined Sodium Bicarbonate Production Process

C. Wylock[1], A. Larcy[1], P. Colinet[1], T. Cartage[2], and B. Haut[1]
[1]Université Libre de Bruxelles, Brussels, Belgium
[2]Solvay S.A., Brussels, Belgium

This work deals with the quantification of the CO2 transfer rate from a bubble to the surrounding liquid in a bubble column. A model is successfully developed using COMSOL Multiphysics. The validated model is used to study the enhancement influence of chemical reactions on the transfer rate. Moreover, the results of this study are compared with a classical 1-D approach and excellent comparison is ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Numerical Simulation of pH-sensitive Hydrogel Response in Different Conditions

M.K. Ghantasala[1], B.O. Asimba[1], A. Khaminwa[1], K.J. Suthar[2], D.C. Mancini[3]
[1]Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[3]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA

The understanding of pH-sensitive hydrogel swelling response in different buffer environmental condition is essential for its use in different practical applications. This necessitates its simulation in steady state and transient conditions. This paper mainly deals with the details of the numerical simulation performed by developing coupled formulation of chemo-electro-mechanical behavior of the ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL

J. Knox[1], K. Kittredge[1], R.F. Coker[1], R. Cummings[1], C.F. Gomez[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

“NASA\'s Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit” [1]. Under the new Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project [2], efforts are focused on improving current ...

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Quick Search