Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of Catalytic Radiant Heaters

J.P.Mmbaga, T.M. Mannan, N. Joederi, S.E. Wanke, and R.E. Hayes
University of Alberta

In this work we present the modelling of catalytic radiant heaters. The presentation outlines the mathematical model as well as a Laboratory setup of a catalytic radiant heater.

Modeling of Heat and Mass Transport in a Nonlinear Catalytic Bed Reactor

A. Machac [1], R. Henda [2], and B. Nilsson [2]
[1] School of Engineering, Laurentian University, Sudbury, ON, Canada
[2] Lund University, Sweden

Heat and mass transport phenomena in a tubular catalytic bed reactor are numerically investigated. A two-dimensional pseudo-heterogeneous model, accounting for transport in the solid and fluid phases, with axial and radial dispersions, is used to describe the reactor. The calculation results show the development of a hot spot in the reactor. The effects of inlet process conditions are ...

Computations on the coupled heat and mass transfer during fires in bulk materials, coal deposits and waste dumps

Krause, U., Schmidt, M., Lohrer, C.
Federal Institute for Materials Research and Testing (BAM), Division II.2 “Reactive Substances and systems”, Berlin, Germany

In porous combustible matter low-rate oxidation takes place at ambient conditions. In large stockpiles of bulk goods, coal heaps, waste dumps etc. it may occur that the heat released by the oxidation reaction is not fully transmitted to the surroundings but raises the temperature within the deposit. This triggers a positive feed-back loop since the oxidation rate increases with temperature. The ...

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Numerical Analysis of the Self-Heating Behaviour of Coal Dust Accumulations

D.Wu[1], E. Van den Bulck[1]
[1]Katholieke Universiteit Leuven, Department of Mechanical Engineering, KU Leuven, Belgium

Introduction Self-heating behaviour of dust accumulations is a multiphysics field coupled heat and mass transfer in the porous media. A typical experimental apparatus with a hot storage oven and mesh wire baskets has been taken as the study object. The influence of gas flow velocity, oxygen concentration and ambient temperature on the self-heating behaviour of the dry coal dust sample has been ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

Modeling the Coupled Heat and Mass Transfer during Fires in Stored Biomass, Coal and Recycling Deposits

F. Ferrero, M. Malow, A. Berger, and U. Krause
Bundesanstalt für Materialforschung und prüfung (BAM), Berlin, Germany

In this paper, advances in the development of a numerical model for predicting the possibility of self-ignition in stored biomass, coal heaps or underground seams and dump deposits are presented. Results from the performed simulations are compared with experimental data. Finally, some conclusions and the possibilities for future work are drawn.

Numerical Simulations of Methane Aromatization with and without a Ceramic Hydrogen Separation Membrane

Z. Li[1], C. Kjølseth[2], S. Hernandez Morejudo[3], R. Haugsrud[1]
[1]University of Oslo, Department of Chemistry, FERMiO, Oslo, Norway
[2]Protia, Oslo, Norway
[3]University of Oslo, Department of Chemistry, InGAP, Oslo, Norway

Oxygen-free methane aromatization has been attracting growing attention due to a potential means for producing high valuable products such as aromatics and hydrogen. Many studies have been focused on catalysts screening and characterization, and elementary thermodynamic steps of the reaction. However, little attention has been paid to fluid dynamics which are important for an industrial ...

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

Quick Search