Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Kinetic Parameters for Gas Phase Photocatalysis: Analytic Versus CFD Approach - new

S. Denys[1], S. Verbruggen[1], S. Lenaerts[1]
[1]Sustainable Energy and Air Purification, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

Introduction Among the advanced oxidation processes (AOPs) for removal of volatile organic compounds (VOCs) from air, photocatalytic oxidation (PCO) is considered a very promising technology [1,2]. PCO can achieve mineralization of harmful VOCs to CO2 and H2O using only UV light [3]. A main challenge is to find appropriate kinetic models and parameters that accurately describe the rate of ...

Hydrodynamics and Mass Transfer in Taylor Flow

F. L. Durán Martínez [1], A. M. Billet [1], C. Julcour-Lebigue [1], F. Larachi [2],
[1] Toulouse University, Toulouse, France
[2] Laval University, Quebec, Canada

In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick catalytic layer (washcoat), and host a gas-liquid segmented flow (the so-called Taylor flow) known to enhance ...

Air Bubbles Motion Through Fresh Concrete During Concreting Process

E. Chuta [1], J. Jeong [2],
[1] Université Paris-Est, IRC-ESTP, Cachan, France
[2] IRC-ESTP, Cachan, France

Over the last years, the concrete technology has progressed in order to improve the quality of its use and mechanical performances. Despite the technical development known in the context of concrete, the esthetic aspect remains weakly treated. Among the esthetic problems, there is the formation and dispersion of air bubbles (Bugholes) inside the concrete during the concreting process. An ...

A Model of Gas Bubble Growth by COMSOL Multiphysics

B. Chinè[1,2], and M. Monno[1,3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Instituto Tecnològico de Costa Rica, Escuela de Ciencia e Ingenierìa de Materiales, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many complexities, mainly due to the coupled momentum, mass and energy transport mechanisms, presence of more phases in ...

Design of an Anisokinetic Probe for Sampling Radioactive Particles from Ducts of Nuclear Facilities

P. Geraldini [1],
[1] Sogin Spa, Rome, Italy

The aim of this study is to design a new concept of shrouded probe that meets the ISO 2889 requirements and it is suitable for small-ducts installation. In order to reduce the construction costs they have been considered standard stainless steel welding fittings manufactured according to ASME/ANSI specifications. In particular, with the numerical simulations, they have been firstly evaluated ...

Simulation of the Flow of an Autonomous Spherical Ball inside a Pipeline

W. Chalgham [1], A. C. Seibi [1], M. Mokhtari [1],
[1] University of Louisiana at Lafayette, Lafayette, LA, USA

One of the limitations of pipelines performance and structural integrity assessment is the continuous inspection of possible leaks due to corrosion or other types of failure mechanisms. Efforts to develop new technologies started several decades ago where different inspection techniques were used to enhance pipelines structural integrity. However, although available technologies present some ...

High Frequency Magnetohydrodynamic Calculations in COMSOL

N. Kleinknecht, and S. A. Halvorsen
Teknova AS
Kristiansand, Norway

In many metallurgical processes metals are (heated and) stirred by an oscillating external magnetic field. The magnetic field induces electric currents in the metal and the currents interact with the magnetic field to create a force, the Lorentz force. For high frequencies induction only takes place in an electromagnetic boundary layer due to the skin effect and the force is confined within this ...

Design and Simulation of Piezoelectric Micropump and Microvalve based Drug Delivery System

D. Samajdar[1], P. Podder[1], A. Bhattacharyya[1], S. Sen[1]
[1]Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, WB, India

In the emerging field of MEMS microfluidics, micropumps and microvalves are two of the most important devices with a wide spectrum of applications such as programmable drug delivery systems, lab-on-a chip devices, µTAS (micro total analysis system), micro electric cooling applications etc. These microfluidic components are dominating the MEMS applications by virtue of their improved performance ...

Modelling of a Single Cardiomyocyte Interaction with a Microcantilever Using COMSOL Multiphysics®

I. Banerjee[1]
[1]Tampere University of Technology, Tampere, Finland

: One of the most commonly used techniques for quantification of beating forces exerted by cardiomyocytes is culturing them on a bed of vertical microcantilevers or microposts. The position of the microcantilevers is observed through advanced imaging techniques and the displacements are observed over a period of time. The stiffness of the microcantilevers is known and thus the force can be ...

Modeling of Transport Phenomena in Metal Foaming

B. Chinè[1], M. Monno[2]
[1]Laboratorio MUSP Piacenza, Italy; ITCR, Esc. Ciencia e Ing. Materiales, Cartago, Costa Rica
[2]Laboratorio MUSP, Piacenza, Italy; Politecnico di Milano, Dip. Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications in engineering. Foamed metals or alloys include gas voids in the material structure with the real possibility to modify ad hoc their physical properties. Following our previous efforts aimed to simulate and study the foaming process of a metal, we propose in this work a model which considers heat and mass transfer ...