Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Computational Study of the Reynolds Piped flow Experiment

Sanidhya Painuli[1], Jayasankar Variyar[1]
[1]Vellore Institute Of Technology, School of Mechanical and Building Sciences, Vandalur Kelambakkam Road, Chennai, India

The study of interaction of fluid with matter assumes great significance for most engineering applications. The flow can be either turbulent or laminar, and different types of interactions arise out of these flow. In the introductory undergraduate course of fluid mechanics, a typical demonstration for these interactions is the Reynolds pipe flow experiment. Instabilities of various types like ...

Influence of Axial Conduction in the Design of a Compact Recuperator for Catalytic Combustor Based Portable Power Generation - new

A. N. Smith[1], H. Nochetto[2], C. M. Waits[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]U.S. Army Research Lab, Adelphi, MD, USA

Catalytic micro-combustor represents an exciting area of research for portable power generation. Extensive research is being currently conducted on the design of the reactor and catalyst selection [1]. However another critical element of the design will be a recuperator to minimize losses and provide energy at a more uniform temperature. The mini-recuperator must be both compact and highly ...

2-Dimensional Incompressible and Compressible Mantle Convection - new

Changyeol Lee[1]
[1]Faculty of Earth and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea

COMSOL Multiphysics® software has been used in computational geodynamics for years. Because very high pressure in the mantle even significantly compressed the mantle up to ~40%, it is crucial to consider the mantle compressibility in computational geodynamics. COMSOL Multiphysics allows consideration of mantle compressibility using the CFD Module and I benchmarked COMSOL Multiphysics using ...

Numerical Simulation of Exact Two-Dimensional Governing Equations for Internal Condensing Flows

S. Mitra, R. Naik, and A. Narain
Michigan Technological University, Houghton, MI, USA

The paper outlines a two-dimensional computational methodology and presents results for laminar/laminar condensing flows inside mm- scale ducts. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady and unsteady flows. The results obtained are shown to be in agreement with an independently developed ...

Evaluation of COMSOL as a Tool for Pinpointing Moisture Entering Locations From Inside Surface Moisture

J. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

The location and nature of the moisture leakages are sometimes difficult to detect. Moreover, the relation between observed inside surface moisture patterns and where the moisture enters the construction is often not clear. The objective of this paper is to investigate inverse modeling techniques as a tool for the detection of moisture leakage locations in building constructions from inside ...

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery

S. Vaidehi, and A. Ritter
Stevens Institute of Technolgy, Hoboken, NJ, USA

Atherosclerosis is a disease that narrows, thickens, hardens and restructures a blood vessel due to substantial plaque deposit. In the Carotid Artery, the decision to treat using endarterectomy and stenting is determined by the velocity as measured by Doppler flow in the common Carotid Artery. The measured Doppler velocity as compared with the contra-lateral side has been correlated with the ...

Three Dimensional Numerical Study of the Interaction of Turbulent Liquid Metal Flow with an External Magnetic Field

G. Pulugundla[1], M. Zec[2], and A. Alferenok[3]
[1]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[2]Department of Advanced Electromagnetics, Ilmenau University of Technology, Ilmenau, Germany
[3]Electrothermal Energy Conversion Group, Ilmenau University of Technology, Ilmenau, Germany

Lorentz Force Velocimetry (LFV) is a non-contact measurement technique used to determine flow rates in electrically conducting fluids by exposing the flow to an external magnetic field and measuring the Lorentz force acting on the magnet system. Typically, for LFV applications real and complex permanent magnet systems with inhomogeneous magnetic fields interact with the fluid. In this paper, ...

Modeling of Coupled Fluid Flow and Shear-induced Solidification Kinetics in Rheocasting of Aluminium Alloys

G. Maizza, and G. Lorenzatto
Politecnico di Torino
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Torino, Italy

The model proposed by Schneider et al., for polymers is herein adapted in order to assess its suitability in elucidating the thixotropic behavior of aluminum alloys. The COMSOL Multiphysics program is employed to solve the inherent coupled mathematical problem, consisting in the kinetic ordinary differential equations and the momentum and energy transport partial differential equations. The ...

A Coulomb Stress Model to Simulate Induced Seismicity Due to Fluid Injection and Withdrawal in Deep Boreholes

G. Perillo[1], G. De Natale[2], C. Troise[2], A. Troiano[2], M.G. Di Giuseppe[2], A. Tramelli[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV, Osservatorio Vesuviano, Naples, Italy

Fluid injection and withdrawal in deep wells is a basic procedure in mining activities and deep resources exploitation, i.e. oil and gas extraction, geothermal exploitation, geothermal permeability enhancement and waste ?uid disposal. All these activities have the potential to induce seismicity, as dramatically demonstrated by the 2006 Basilea earthquake of magnitude ML=3.4. The mechanism of ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Quick Search