Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

L.W. Wong[1]
[1]International Centre for Geothermal Research, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, Potsdam, Germany

Within the framework of Groß Schönebeck project in the North German Basin of Germany, multiphysics between deep geothermal reservoir, boreholes, heat exchangers and power plant is crucial to study lifecycle behavior of each component thereafter a later coupling to study lifecycle and recovery of the overall geothermal system. Study is divided into geothermal water cycle, surface heat exchanger ...

Study of HVDC Grounding Systems Using Finite Element Methods

C. K. C. Arruda [1], A. A. Silveira [1], L. C. R. Vieira [1], F. C. Dart [1],
[1] CEPEL, Rio de Janeiro, RJ, Brazil

High Voltage Direct Current transmission (HVDC) is a suitable alternative for long distance transmission. During the years, the use of this technology has been increasing, which is one of the several reasons to improve methodologies in HVDC grounding systems. Unlike the usual approach in AC, a HVDC grounding system is distinguished by its operating procedures, which is, when it is configured ...

Modeling and Simulation of the Consolidation Behaviour of Cemented Paste Backfill

L. Cui [1], M. Fall [1],
[1] University of Ottawa, Ottawa, ON, Canada

In underground mining operations, the mined-out spaces (called stopes) need to be backfilled to maintain the stability of surrounding rock mass and increase the ore recovery. Cemented paste backfill (CPB), a mixture of water, binder, and tailings, has been intensively utilized in underground mining operations to fill the stopes. After preparation, the fresh CPB is transported into stopes via ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Development of a Thermo-Hydro-Geochemical Model for Low-Temperature Geoexchange Applications

F. Eppner [1], P. Pasquier [1], P. Baudron [1],
[1] École Polytechnique de Montréal, Montréal, QC, Canada

Standing column wells (SCW) are open-loop geoexchange systems used to provide space heating and cooling to buildings. As they use groundwater as heat carrier fluid and modify its thermo-chemical conditions along the year, they may favor calcite dissolution and precipitation, thus increasing maintenance costs. In order to predict the thermo-hydro-chemical (THC) processes occurring in a SCW and ...

Two-phase Flow Calculations in Pore Unit Cells Implementing Mixed FEM/Lattice-Boltzmann Simulators

E. D. Skouras [1][2], A. N. Kalarakis [2], M. S. Valavanides [3], V. N. Burganos [1],
[1] Foundation for Research and Technology, Hellas/Institute of Chemical Engineering Sciences, Patras, Greece
[2] Dept of Mechanical Engineering, TEI of Western Greece, Patras, Greece
[3] Dept of Civil Engineering, Applied Mechanics Laboratory, TEI of Athens, Athens, Greece

In general, macroscopic two-phase flow in porous media is a mixture of connected and disconnected oil flow. The latter is expressed as ganglion dynamics and drop traffic flow, patterns observed experimentally in pore network models [1,2] and real porous media [3,4]. This characteristic was adversely not taken into account in previous modeling approaches. The mechanistic model DeProF [5], ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems

A. Chiasson
University of Dayton, Dayton, OH, USA

Geothermal heat pumps use the earth as a heat source and sink via a ground heat exchanger (GHX) that consists of a network of buried heat exchange pipes, which can either be installed in vertical boreholes or in shallow horizontal trenches or excavations. The main goal in GHX design is to determine the minimum length of pipe needed to provide adequate fluid temperatures to heat pumps over their ...

Modeling of Biocalcification in Non-Saturated Conditions

B. Courcelles [1], C. Raymond-Poirier [1],
[1] École Polytechnique de Montréal, Montréal, QC, Canada

In the context of increasing demographic pressures around the world, soil improvement techniques constitute viable alternatives to expensive foundations. Among these techniques, the biocalcification of granular soils appears as a promising alternative relying on the formation of calcium carbonates. The process is relatively basic and energy efficient, as based on the metabolic activity of the ...

Simulation of a Nozzle in a Borehole

E. Holzbecher [1], F. Sun [2],
[1] German University of Technology in Oman, Muscat, Oman, Germany
[2] Georg-August-Universität, Göttingen, Germany

In boreholes nozzles have to be found advantageous to increase the infiltration rate of water into the subsurface ground. Studies and practice in the field shows that the infiltration of water into permeable aquifers can be improved, if the flow in the borehole is modified. Due to the nozzle the flow regime turns from linear to turbulent. CFD studies help to understand the physics of the ...