Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Implementation of an Isotropic Elastic-Viscoplastic Model for Soft Soils Using COMSOL Multiphysics

M. Olsson[1], T. Wood[1], C. Alén[1]
[1]Division of GeoEngineering, Chalmers University of Technology, Gothenburg, Sweden

In this paper a elastic-viscoplastic (creep) model is implemented in COMSOL 4.2a and 4.3 and benchmarked against another commercial finite element software package with a very similar material model. It is also validated against commonly performed laboratory tests such as Constant Rate of Strain oedometer tests (CRS) and K0-Consolidated Undrained triaxial tests (K0CU). The implementation in ...

Poromechanics Investigation at Pore-scale Using Digital Rock Physics Laboratory

S. Zhang[1],
N. Saxena[2],
P. Barthelemy[1], and
M. Marsh[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Stanford University, Palo Alto, CA, USA

Understanding the rock structure at nano to micro scale is of growing importance in geology, oil and gas, and hydrology. New approaches that relies on a variety of high resolution 3D imaging techniques offered tremendous potential. These new approaches, in the meanwhile, introduce significant new challenges. Starting from digital imaging data, the paper introduces an image-to-simulation ...

Submarine Gas Hydrate Reservoir Simulations - A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments - new

S. Schlüter[1], T. Hennig[1], G. Janicki[1], G. Deerberg[1]
[1]Fraunhofer UMSICHT, Oberhausen, Germany

In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing methane by depressurization and/or by injecting CO2 is studied in the frame of the research project SUGAR. ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Modeling and Simulation of the Consolidation Behaviour of Cemented Paste Backfill

L. Cui [1], M. Fall [1],
[1] University of Ottawa, Ottawa, ON, Canada

In underground mining operations, the mined-out spaces (called stopes) need to be backfilled to maintain the stability of surrounding rock mass and increase the ore recovery. Cemented paste backfill (CPB), a mixture of water, binder, and tailings, has been intensively utilized in underground mining operations to fill the stopes. After preparation, the fresh CPB is transported into stopes via ...

Transport, Growth, Decay and Sorption of Microorganisms and Nutrients through Porous Media: A Simulation with COMSOL

D. Lopez-Falcon, M. Diaz-Viera, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

Transport of microorganisms through porous media governs many phenomena in bioremediation of environmental pollution problems and microbial enhanced oil recovery. The aim of this work is to investigate the effects of some transport parameters on breakthrough curves as well as on spatial distribution of components transported through a porous medium by a fluid phase. Using COMSOL Multiphysics and ...

Analysis of 1D, 2D, and 3D Marine CSEM in COMSOL Multiphysics® Software - new

E. C. Luz[1]
[1]Universidade Federal do Pará, Belém, PA, Brazil

The Marine Controlled Source ElectroMagnetic (marine CSEM) is a geophysical method used by the oil industry to investigate resistive targets in the sediments under the ocean floor. In this work we simulate marine CSEM data including 1D, 2.5D and 3D modeling. The results obtained with COMSOL Multiphysics show themselves as a promising tool for the studies of electromagnetic methods in prospecting ...

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...