Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat and Mass Transfer in Partially Frozen Food Material

B. Watzke[1], H. Deyber[1], and H. Limbach[2]
[1]Nestlé Research Centre, Lausanne, Switzerland
[2]Research Centre, Lausanne, Switzerland

The freezing curve of the food material was extracted from Differential Scanning Calorimetry experiments. A heat conductive model was generated in COMSOL, including the thermo-physical characteristics and the phase transition behavior. The resulting temperature-time evolutions at different positions in space were in excellent agreement with our experimental data. Changing scale, the variation ...

Porous Media Based Model for Deep-Fat Vacuum Frying Potato Chips

A. Warning, A. K. Datta, A. Dhall, and D. Mitrea
Department of Biological and Environmental Engineering
Cornell University
Ithaca, NY

A multiphase porous media model involving heat and mass transfer within a potato chip was implemented in COMSOL 3.5a. The diffusive flux in oil and liquid water was modeled from capillary driven flow while the gas phase was modeled using binary diffusion. A non-equilibrium water evaporation rate was used and Darcy's law for the momentum equation to solve for the convection of each ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Post Harvest Cold Chain Optimization of Little Fruits

S. Marai[1], E. Ferrari[1], R. Civelli[1]
[1]DiSAA, University of Milan, Milan, Italy

This paper presents heat transfer 3-D models of a passive refrigeration system used to improve the shelf life and the quality of the perishable fruits. Passive refrigerator system uses the changing phase to keep temperature close to the melting temperature. A multi-step study was performed: a 3-D heat transfer model on the empty box; a 3-D heat transfer model on the box containing a slab with ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Microwave Inactivation of Bacteria Under Dynamic Heating Conditions in Solid Media

S. Curet[1], M. Mazen Hamoud-Agha[1]
[1]GEPEA, UMR 6144, CNRS, ONIRIS, Université de Nantes, Nantes, France

In this study, COMSOL®4.2a is used to model a microwave heating process in a TE10 rectangular waveguide. The sample consists of a small cylindrical Ca-alginate gel (D = 8 mm, H = 10 mm) inoculated with bacteria Escherichia Coli K12. The sample is placed along the microwave propagation direction into the waveguide. Maxwell’s equations and heat transfer are coupled to a microbial inactivation ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing it ...

An Integrated Numerical-Experimental Approach for Heat Transfer Analysis of Industrial Furnaces

G. Petrone[1], A. Adorisio[2], S. Adorisio[2], M. Calderisi[3], A. Cecchi[3], M. Scionti[1], F. Turchi[3]
[1]BE CAE & Test, Catania, Italy
[2]Gadda Industrie, Ivrea, Italy
[3]Laboratori Archa, Pisa, Italy

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal distribution inside an industrial furnace built for metal materials treatments. The main goal of the research is to find the geometrical and/or functional parameters responsible for a not homogeneous thermal distribution inside the internal volume of the furnace. During the ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL

J. Knox[1], K. Kittredge[1], R.F. Coker[1], R. Cummings[1], C.F. Gomez[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

“NASA\'s Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit” [1]. Under the new Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project [2], efforts are focused on improving current ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Quick Search