Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium vapor ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Modeling Time-Dependent, Rigid-Body Motion of a Microswimmer

A. F. Tabak [1], G. Amador [1], M. Sitti [1],
[1] Max Planck Institute for Intelligent Systems, Stuttgart, Germany

The thermocapillary effect is widely used in microfluidic applications for sensing and actuation and can also be used to generate rigid-body motion. Furthermore, it is possible to cast Marangoni flows to achieve controllable rigid-body motion in 3D space. To this effect, here we present the basics of a simulation technique to analyze 6-DOF time-dependent rigid-body motion of such a microswimmer ...

Optimal Thermal Design of Converged-Diverged Microchannel Heat Sinks for High Heat Flux Applications

D. Chakravarthii [1], S. Subramani [1], M. Devarajan [1],
[1] Univeristy of Science Malaysia (USM), Georgetown, Penang, Malaysia

With the advancements in aerospace technology, micro-electromechanical systems, hybrid data centres and microfluidics, the miniature size electronic chips in such applications are need of the century. The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of devices. Microchannel heat sinks are efficient method to dissipate heat when the ...

Numerical Modeling of the Original and Advanced TEMKIN Reactor for Catalysis Experiments in Laboratory Scale - new

D. Götz[1], M. Kuhn[1], P. Claus[1]
[1]Ernst-Berl-Institute/Chemical Technology II, Darmstadt, Germany

Many industrial, especially heterogeneously catalysed, processes are characterised by a strong interaction between the reaction kinetics and transport phenomena. Because experiments in laboratory scale can be very time- and cost-intensive, Temkin and Kul’kova developed a new reactor design for the direct testing of industrial catalysts. Based on this concept of linearly alternating catalyst and ...

Enhanced Transient Modeling of Hybrid Photovoltaic Air (PVT) Module - new

R. Kiflemariam[1], M. Almaz[1], F. Zevallos[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air velocity and temperature. The model has a good agreement with experimental data for the photovoltaic cell ...

Improvement of a Steady State Method of Thermal Interface Material Characterization by Use of a Three Dimensional FEA Simulation in COMSOL

B. Sponagle[1], D. Groulx[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

An FEA model of a steady state thermal interface material characterization apparatus was created in COMSOL Multiphysics 4.2a. This model was then fitted using three convection heat loss coefficients and the conductance of the TIM layer to a set of experimental measurements made using a steady state apparatus. It was shown that the model successfully matched the measured temperature values and ...

Modeling an Adsorption Process in a Shell-and-Tube-Heat-Exchanger-Type Adsorber - new

G. Salazar Duarte[1], B. Schürer[1], C. Voss[1], D. Bathen[2]
[1]Linde AG, Munich, Germany
[2]Universität Duisburg-Essen, Duisburg, Germany

Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA) are commonly used for separation/purification of gas mixtures in industrial processes. The cycle time of industrial TSA processes usually ranges from several hours to days. The reason for this long cycle time is the usage of purge gas for heating and cooling the system (direct heating), which limits the application of TSA ...

Biological Effects of Microwave Radiation - new

S. Kumari[1], S. Raghavan[1]
[1]National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India

Microwave technology has provided with many exciting new therapeutic and diagnostic methods. Frequencies from RF as low as 400 kHz through microwave frequencies as high as 10 GHz are presently used for therapeutic applications in areas such as cardiology, urology, surgery, ophthalmology, cancer therapy and for diagnostic applications in areas such as cancer detection, organ imaging and more. At ...