Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

MEMS Structure for Energy Harvesting

S. Rabbani, P.K. Rathore, G. Ghosh, and B.S. Panwar
Indian Institute of Technology Delhi, New Delhi, India

In this paper, a piezoelectric cantilever is investigated using finite element analysis made possible by COMSOL Multiphysics for the generation of electrical energy. A micro power generator was designed to convert mechanical vibrations present in the environment to electrical power. The model was studied for different cantilever dimensions. The load resistor was optimized for obtaining maximum ...

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based modelling. Since then, he has focused on carbon material and process simulation employing methods of optimization ...

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. In this paper, we discuss about the effects of Alumina as gripper on the operation of micro tweezers. The ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Three-Dimensional Percolation Properties Simulation of a Marine Coating Based on Its Real Structure Obtained from Ptychographic X-Ray Tomography - new

B. Chen[1], M. Guizar-Sicairos[2], G. Xiong[1], L. Shemilt[1], A. Diaz[2], J. Nutter[1], N. Burdet[1], S. Huo[1], F. Vergeer[3], A. Burgess[4], I. Robinson[1]
[1]London Centre for Nanotechnology, University College London, London, UK
[2]Paul Scherrer Institute, Villigen, Switzerland
[3]AkzoNobel Co. Ltd., Sassenheim, Netherlands
[4]AkzoNobel (UK) Co. Ltd., Tyne and Wear, UK

We present quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by ptychographic X-ray computed tomography (PXCT) [1-3]. We then use COMSOL Multiphysics® software to perform simulations on the acquired real 3D structure to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the ...

COMSOL API Based Toolbox for the Mixed-Level Modeling of Squeeze-Film Damping in MEMS: Simulation and Experimental Validation

M. Niessner[1], G. Schrag[1], J. Iannacci[2], and G. Wachutka[1]
[1]Institute for Physics of Electrotechnology, Munich University of Technology, Munich, Germany
[2]MEMS Research Unit, Fondazione Bruno Kessler, Povo di Trento, Italy

We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The results obtained from mixed-level model simulation performed in COMSOL Multiphysics agree very well with ...

A Study of the Effects of Mounting Supports, and Dissipation on a Piezoelectric Quartz Double-Ended Tuning Fork Gyroscope

G. Choi[1], Y. Yong[1]
[1]Rutgers University, New Brunswick, NJ, USA

A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular velocity about a y-axis that is the longitudinal axis along the length of the tuning fork. Eigenfrequency ...