Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Modeling of a Counter Flow Plate Fin Heat Exchanger - new

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

3D Multiphysics Model of Thermal Flow Sensors - new

C. Falco[1], A. De Luca[1], S. Sarfraz[1], F. Udrea[1]
[1]University of Cambridge, Cambridge, UK

The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated up with a resistive element biased with an external current, surrounded by one or more temperature sensing ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

2D Simulation of Cardiac Tissue - new

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce ...

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an elastomeric tube pumping a viscous Newtonian fluid. The model captures the peristaltic flow, the flow fluctuations ...