See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Benchmarking Tailored Formulations of Multiphase Flow in Porous Media

Á. Sainz [1,2], A. Nardi [1], E. Abarca [1], F. Grandía [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Université Toulouse III - Paul Sabatier, Toulouse, France

Nowadays, gas and nuclear waste storage, shale gas and EOR exploitation rise the need to understand and predict the fate of multiphase flows in the underground. Various formulations for multiphase flow arise from different linear combinations of governing equations and choice of ... Read More

Modeling Degradation in Lithium-Sulfur Batteries

R. Purkayastha [1], G. Minton [1], L. O'Neill [1], S. Walus [1], M. Wild [1], M. Marinescu [2], T. Zhang [2], G. Offer [2]
[1] Oxis Energy Ltd, Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
[2] Mechanical Engineering Department, Imperial College, London, United Kingdom

Two Anode Surface processes are examined : Formation of Solid Electrolyte Interphase (SEI) and heating due to Shuttle Current. During charging, higher order sulfur species are reduced at the anode surface, while they are concurrently being oxidized at the cathode. This leads to the ... Read More

Simulation and Validation of Pan Evaporation Rates Using COMSOL Multiphysics® Software

L. J. Matel [1]
[1] Green Streets Infrastructure LLC, Seattle, WA, USA

The four foot diameter class A evaporation pan is used by the scientific community as the standard for determining evaporation rates for a number of purposes. The COMSOL Multiphysics® software provides the necessary tools to adequately develop synthetic estimates of evaporation values ... Read More

Geologic Carbon Storage: Implications of Two-Phase Flow on Injection-Induced Stress on Faults

S. Prasun [1], S. Kim [2], S. A. Hosseini [3],
[1] Louisiana State University, Baton Rouge, LA, USA
[2] Department of Civil Engineering University of Nebraska - Lincoln, Omaha, NE, USA
[3] Bureau of Economic Geology, University of Texas - Austin, Austin, TX, USA

Geologic carbon storage that involves injecting carbon dioxide (CO2) into a subsurface sequestration site provides the vital approach for reducing CO2 emissions into atmosphere and thus addressing climate change issue. One challenge associated with CO2 geologic storage is that pore ... Read More

Role of the Diffusion Current in Nonequilibrium Modeling of Welding Arcs new

M. Baeva[1]
[1]INP Greifswald e.V., Greifswald, Germany

2D self-consistent nonequilibrium model of a free-burning arc in argon has been developed. The model is based on the COMSOL Multiphysics® platform and describes in a self-consistent manner the fluid dynamics, the heat transfer, the magneto-electrodynamics, and species conservation. The ... Read More

Simulation of a Dual Axis MEMS Seismometer For Building Monitoring System

M. A. Shah [1], F. Iqbal [1], B. L. Lee [1],
[1] Korea University of Technology and Education, Cheonan, Chungcheong, South Korea

A dual axis MEMS seismometer targeted for building monitoring system has been simulated for a full scale of ±5g acceleration. The design uses the capacitive effect for vibration sensing. This comb drive capacitive MEMS seismometer consists of 8 springs with two proof masses. The device ... Read More

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

K. J. Kim [1], T. Stalbaum [1], Q. Shen [1],
[1] Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, USA

Ionic polymer-metal composite (IPMC) materials are promising candidates for soft robotics and artificial muscle applications. The primary actuation mechanism in such devices is ion migration in a polymer membrane, localized swelling, and a corresponding overall material deformation, ... Read More

Validation of COMSOL Multiphysics® for PWR Power Distribution via 3D IAEA PWR Benchmark Problem

A. Y. Soliman [1],
[1] Department of Nuclear Engineering, King Abdulaziz University, Jeddah, Saudi Arabia Kingdom

Design of the Pressurized Water Reactors (PWRs) involves extensive calculations to verify the reactor safety criteria such as power peaking factor during the reactor lifetime. Coupling of neutronic calculations, thermal hydraulic calculations and other reactor phenomena requires a ... Read More

Laminar Fluid Flow and Heat Transfer Studies of an Electrical Conducting Fluid Subject to Combined Electric and Magnetic Fields

E. Gutierrez-Miravete[1], T. DePuy[2], and X. Xie[2]
[1]Rensselaer at Hartford, Hartford, CT
[2]Pratt & Whitney, East Hartford, CT

The flow of electrically conducting fluids such as liquid metals is significantly affected by applied electric and magnetic fields. The effect has important industrial applications in metallurgy, nuclear technology and other fields. This paper described results of a series of studies ... Read More

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics ... Read More