See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics new

N. Baccichet[1], G. Savini[1]
[1]Department of Physics and Astronomy, University College London, London, UK

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics This work focuses its analysis on polymer-based filters used in space-borne astronomical instrumentation for Cosmic Microwave Background Radiation and Far-Infrared observations. Most of these ... Read More

An Approach to Modeling Vacuum Desorption new

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with ... Read More

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in ... Read More

Use of COMSOL Multiphysics® Software for Physics Laboratory Exercises

H. van Halewijn [1],
[1] Fontys Hogeschool, Applied Physics, Eindhoven, Netherlands

COMSOL Multiphysics® is used to simulate thermal flow experiments at out University for Applied Physics. Students have to measure thermal flow problems and verify the measurements with detailed simulations. The desired accuracy is 5% or less. The presentation will cover 3 laboratory ... Read More

Magnetic Particle Buildup Growth on Single Wire in High Gradient Magnetic Separation  

F. Chen
Department of Chemical Engineering, M.I.T., Cambridge, MA, USA

Magnetic fluids containing nano or submicron magnetic particles and their application in food, biological and pharmaceutical systems have recently attracted increasing attention. Magnetic particles can be collected efficiently in magnetizable matrices (e.g. iron wires) in high gradient ... Read More

FSWR Microlith Performance Metrics Assessment

R. Cummings[1], J. Knox[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

COMSOL Multiphysics® has been used to develop assessment tools for the NASA-sponsored Precision Combustion, Inc. (PCI) regenerable Microlith®- based adsorber modules. The Full Scale Water Removal (FSWR) PCI Microlith® was initially modeled for comparison with exit velocity data, ... Read More

Electro Magnetic Wave Simulation in Fusion Plasmas

O. Meneghini[1], and S. Shiraiwa[1]
[1]Plasma Science and Fusion Center, Massachusetts Institute of Technology, Massachusetts, USA

Fusion is a form of nuclear energy which has impressive advantages from the point of view of fuel reserves, environmental impact and safety. If successful, fusion energy would ensure a safe, resource conserving, environmentally friendly power supply for future generations. In a world ... Read More

Keynote Talk: Building a Better Pump for Heart Failure Patients

[1] F. Hansen
Abbott Laboratories, Pleasanton, CA, USA [1]

Abbott’s Mechanical Circulatory Support group build implants that help people suffering from heart failure, a deadly and increasingly common disease. We combine computational fluid dynamics and particle tracing simulations to optimize the designs of implantable blood pumps that replace ... Read More

Thermo-mechanical Modeling of Pu-238 Production Target at HFIR

C.J. Hurt [1], J.D. Freels [2],
[1] University of Tennessee, Knoxville, TN, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

The production model in the COMSOL Multiphysics® software makes use of the most up-to-date PIE data, material property inputs, and modeling methodology. The fully coupled thermo-mechanical equations are solved over the entire domain, significantly increasing the degrees of freedom ... Read More

Numerical Analysis of the Effect of the Electrode Distance During the Determination of the Flammability Limits of Gases

F. Ferrero, M. Beckmann-Kluge, and V. Schröder
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

Simulations with COMSOL Multiphysics were performed, in order to analyze the gas flow patterns during the induced ignition of gases. Simplified calculations were performed. The ignition spark was assumed to have a temperature of 2000 K and a laminar flow was selected. 2D calculations ... Read More