Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics – Fuel Cell and LED applications

C-H. Cheng
National Central University, Chungli, Taiwan

Dr. Chin-Hsien Cheng received his PhD. Degree in National Tsing-Hua University, Taiwan in 2007. He joined Institute for Integrated Energy Systems, University of Victoria, Canada as a post-doctoral fellow until Aug. 2009. Currently, he is a research associate and lab manager of the Modeling and Simulation Lab. in the Fuel Cell Center, Yuan-Ze University. Dr. Cheng has been work in the field of ...

The initial simulation on characteristic of lithium ion cells using COMSOL soft

X. Liu, S. Wang, and L. Lu
Tianjin Institute of Power Source, Beijing, China

Tianjin Institute of Power Source (TIPS) is the first, the largest and most complete electrical energy technology research institute of China. We use COMSOL Multiphysics to simulate the lithium-ion batteries. It contains: Simulation on charge-discharge behavior of lithium ion cells; Simulation on thermal and safety of lithium ion cells; Design for lithium ion cells – collector, stress; From ...

Control of Technological and Production Processes Modeled by COMSOL Multiphysics as Distributed Parameter Systems

G. Hulkó, C. Belavý, G. Takács, and P. Zajíček
Slovak Technical University in Bratislava, Bratislava, Slovakia

COMSOL Multiphysics is widely utilized in the modeling of dynamics of technological and manufacturing processes. At the same time the investigated technological and manufacturing processes are generally described by systems of partial differential equations as distributed parameter systems. This paper presents actual possibilities of control of systems modeled by COMSOL Multiphysics as ...

Fluid Flow Analysis For Cross-Flow Around Four Cylinders Arranged In A Square Configuration

A. Dutta, P. Goyal, R.K. Singh, and K.K. Vaze
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Cross-flow around a group of cylinders is a very common phenomenon in engineering, such as flow around heat exchanger tube arrays. The cross-flow-induced vibration might cause a reduction of equipment life and might even lead to the occurrence of severe accidents. Hence, it is necessary to understand the mechanism of flow-induced vibration and the associated fluid–structure interaction in ...

ComsolGrid – A Framework For Performing Large-Scale Parameter Studies Using COMSOL Multiphysics and Berkeley Open Infrastructure for Network Computing (BOINC)

C.B. Ries, and C. Schröder
University of Applied Sciences Bielefeld, Germany

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving large-scale and complex computational problems by means of public resource computing (PRC). In contrast to massive parallel computing, PRC applications are distributed onto a large number of heterogeneous client computers connected by the Internet where each computer is assigned an individual task ...

Propagation Of Tsunamis Over Large Areas Using COMSOL

C. Cecioni, and G. Bellotti
University of Roma TRE, DSIC, Rome, Italy

This paper presents a numerical model based on the mild-slope equation (MSE for short) solved using the PDE mode of the software COMSOL Multiphysics suitable to reproduce the propagation of small amplitude tsunamis in the off-shore field. The model solves the governing equations in the frequency domain and allows the reproduction of the frequency dispersion for broad banded spectrum sea states. ...

Stress Analysis of an Electromagnetic Horn

B. Lepers
IPHC
Université de Strasbourg
Strasbourg, France

An electromagnetic horn is a device used in particle physics to produce a strong pulsed toroidal magnetic field and to focus charged particles toward a detector. A multiphysics analysis is performed to assess the stress level inside the horn structure. In steady state regime, the horn is submitted to a thermal static stress due to thermal dilatation. Then, every 80 ms a strong magnetic field ...

Numerical Modelling of Compact High Temperature Heat Exchanger

O. Smirnova, T. Fend, and D. Schöllgen
Institut of Solar Research in German Aerospace Agency
Cologne, Germany

For the numeric investigations of the high temperature compact heat exchanger two numeric models with and without the regards of the velocity field development were used. The results of the comparison of the numeric and experimental data confirm the necessity of regarding the velocity field development for the compact heat exchangers. The two-dimensional simulation task with the regard of ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As shown ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Quick Search

2661 - 2670 of 2857 First | < Previous | Next > | Last