Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigation Of Bone Marrow Stem Cells In The Bone Marrow Niche In An In Vitro System

P. Lezuo, M. Stoddart, and M. Alini
AO Research Institute, Davos, Grison, Switzerland

We aim to develop an in vitro culture system to mimic the human bone marrow stem cell niche in an artificial perfusion bioreactor environment to culture human adult stem cells. State of the art human bone marrow stem cell research shows that even smallest changes in the physical, thermo dynamical or biochemical environment induce a differentiation of human bone marrow stem cells into other cell ...

COMSOL Assistance for the Modeling of Cellular Microsystems

J. Berthier
Grenoble, France

The developments of microsystems for biotechnology have been fast in the last few years, and no sign of slowing down is observed. It has begun with lab-on-chip for genomics, especially for the recognition of DNA sequences, followed by protein reactors and immunoassays, and today the emphasis is on cellomics. Cell-chips are design to monitor the behavior of cells, individually or as a group, ...

3D FEM-analysis of a Micromachined Wind Sensor Based on a Self-heated Thermistor Array

A. Talic[1], S. Cerimovic[2], M. Mutapcic[2], R. Beigelbeck[1], and F. Keplinger[2]
[1]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

We present COMSOL-based analyses and design optimizations of a micromachined wind sensor. The sensor relies on eight germanium thermistors embedded in a thin silicon nitride membrane, where two orthogonally arranged ensembles, each consisting of four thermistors, are connected to form a double Wheatstone-bridge. In operation, each bridge is supplied by a constant current and the self-heating of ...

Matching 4D Porous Media Fluid Flow GeoPET Data With COMSOL Multiphysics Simulation Results

J. Lippmann-Pipke, J. Kulenkampff, G. Marion, and M. Richter
Helmholtz-Zentrum Dresden
Rossendorf, Institut of Radiochemistry
Research Site Leipzig
Reactive Transport Division
Leipzig, Germany

We apply COMSOL Multiphysics for reproducing our experimental observations of fluid flow and transport processes in geological media. Our experimental GeoEPT-method allows the 4D monitoring of transport processes in geological material on laboratory scale. Explicitly we import “realistic structures” from geologic samples scanned by means of computer tomography (CT) as stl-files into COMSOL ...

Numerical Simulation for Dimensioning a Rock Heating Experiment

P. Ralek, and M. Hokr
Technical University of Liberec
Liberec, Czech Republic

The paper deals with simulation of rock heating experiment in underground, testing the rock properties for geothermal application. The modeled process is unsteady heat conduction in 3D. We made several parametric studies to find the possible temperature range with uncertainty in some of the parameters - in particular an interval around the laboratory measured heat conductivity and capacity and ...

Intraplate Stress Analysis by COMSOL Multiphysics

G. Swetha, G. Pavankumar, and A. Manglik
National Geophysical Research Institute
Andhra Pradesh, India

Mathematical modeling tools are extensively used in Geosciences to delineate the earth structure at various spatial scales as well as to simulate coupled earth processes involving multiphysics concepts. COMSOL, a Multiphysics finite element method based numerical modeling package, can be used to analyze complex systems like earth where various physical parameters are involved and ...

Analysis and Optimization of Dual Arm, Center Excited, Surface Micro-machined Archimedean Spiral Antenna with Improved Wideband Characterestics

G. Miranda[1], N. S. Pamidighantam[1], R. V. Iyer[2], S. Shukla[3], P. Suresh[3], and P. M. Soundarajan[3]
[1]Department of Telecommunications, PESIT, Bangalore,Karnataka,India
[2]Department of Science and Humanities, PESIT, Bangalore,Karnataka,India

An Archimedean Spiral antenna is the common frequency independent antenna which have very large bandwidth. Archimedean Spiral antenna are circularly polarized and typically have radiation patterns with peaks perpendicular to the plane of the spiral. Micro-machining techniques improves the bandwidth characteristics and the radiation efficiency of the antenna. Simulations and results with COMSOL ...

Comparison of Computational Methods for the Estimation of the Dielectrophoretic Force Acting on Biological Cells and Aggregates in Silicon Lab-on-chip

S. Burgarella[1], F. Maggioni[2], and G. Naldi[2]
[1]STMicroelectronics, Agrate Brianza, Milan, Italy
[2]Department of Mathematics, University of Milan, Milan, Italy

Dielectrophoresis is a method for cell manipulation in miniaturized devices exploiting the dielectric properties of cells and/or cellular aggregates suspended in a fluid and subjected to a high-gradient electric field. The mathematical expression of the force is obtained by a multipole expansion whose terms involve increasing power of the particle\'s radius. Three methods for the expression of ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Quick Search

2671 - 2680 of 2856 First | < Previous | Next > | Last