Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Electrochemical Pickling of Steel for Industrial Applications: Modeling

M. Freda[1], A. Giannetti[1], L. Lattanzi[1], S. Luperi[1]
[1]Centro Sviluppo Materiali, Rome, Italy

The electrochemical pickling of steel has two main purposes: 1) To remove thermal oxide; 2) To dissolve chromium-depleted layer, to reinstate the corrosion-resistant properties of the stainless steel; A reliable, flexible and robust 3D model has been made for simulating the steel electrochemical pickling. This process is modeled as a multiphysics system for the current control. The model ...

Multiphysics Analysis of Normal Conducting RF Cavities for High Intensity Proton Accelerators

M. Hassan[1], I. Gonin[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of a typical proton accelerator would contain a radio frequency quadrupole (RFQ) and several buncher cavities. ...

Hemodynamic Simulations of Implanted Multilayer Flow Modulator

A.B. Boubker[1], A. Restante[1]
[1]CARDIATIS, Isnes, Belgium

Ruptured aortic aneurysm is one of the commonest cause of mortality in developed countries. To avoid it interventional repair is an effective treatment. In the recent years the development of new therapies, such as stent implantations, allows to perform this treatment more and more safely establishing it as good alternatives to traditional surgeries. The goal of our study is to investigate the ...

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Modeling the ELENA Electron Cooler with COMSOL Multiphysics® Software - new

G. Tranquille[1]
[1]CERN, Geneva, Switzerland

ELENA is a small cooler decelerator ring at CERN which will be built to increase substantially the number of usable antiprotons delivered to experiments for studies with antihydrogen and antiprotonic nuclei. COMSOL Multiphysics® software has been used to completely model the ELENA electron cooling device in 3D. We have taken advantage of the different physics-based modules of COMSOL ...

COMSOL Multiphysics® Simulation of Energy Conversion and Storage Concepts Based on Oxide Crystals - new

C. Cherkouk[1], M. Zschornak[1], J. Hanzig[1], M. Nentwich[1], F. Meutzner[1], M. Urena[1], T. Leisegang[2], D. C. Meyer[1]
[1]Institute of Experimental Physics, Technische Universität Bergakademie, Freiberg, Germany
[2]Fraunhofer-Technologiezentrum, Freiberg, Germany

A mathematical model based on a finite element method (FEM) is presented as an initial approach for a system converting waste heat energy into chemical energy. This system consists of a pyroelectric LiNbO3 plate placed into a cylinder which undergoes a laminar water flow with an appropriate periodic heat source. It solves the heat transfer equation in non-isothermal flow, where the density of ...

Thermal Natural Convection Simulations with COMSOL Multiphysics® in Comparison with Measurements - new

H. van Halewijn[1]
[1]Fontys University of Applied Physics, Eindhoven, The Netherlands

In a laboratory setup a horizontal rod is heated on one side. By natural convection a stable temperature pattern is developed. Using the Nusselt formulation of the natural convection of cylindrical rods, the temperature distribution can be calculated. Only a good match of the simulations and the measurements can be reached when taking into account all the non-linear physics in the system. In ...