Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Phase Field Modeling of Helium Precipitate Networks on Solid-state Interfaces

D. Yuryev[1], M. Demkowicz [1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

We describe simulations performed in COMSOL Multiphysics® of the precipitation of helium (He) on solid-state interfaces. The non-uniform precipitation of He at certain interfaces is a result of a heterogeneous energy distribution in the interface plane: He wets high interface energy (“heliophilic”) regions but does not wet low interface energy (“heliophobic”) ones. Using a phase-field model, ...

Finite Element Modeling of Five Phase Brushless Motor for High Power Density Application

KIRAN GEORGE[1], SHINOY K S[2]
[1]M A College of Engineering, Electrical and Electronics, Kothamangalam, Ernakulam,Kerala, India
[2]ISRO, Electrical and Electronics, Trivandrum,Kerala, India

The demand for high reliability motor drives increases every day, especially in aircraft where traditional, nonelectric systems (hydraulic, pneumatic) are being replaced by electrical actuators following the More Electric Aircraft (MEA) trend. Its pursuing involves the adoption of protective design concepts such as fault-tolerant or redundant approaches, aiming to minimize mission failure ...

Joule Heating in Electroosmotically Driven Circular Constriction Microchannel

U. Sanjay [1], P. Sarith[2], R. Ajith Kumar[1]
[1]Amrita Vishwa Vidhyapeetham, Kollam, Kerala, India.
[2]National institute of Technology, Calicut, Kerala, India.

Liquid transport in lab-on-a-chip (LOC) devices occurs through a microchannel that uses an electroosmotic flow actuation mechanism. This method has a plug-like velocity profile, which is ideal in species transport and in wall-bounded reactions. Under substantial joule heating, it is not possible to maintain a plug-like velocity distribution. My work investigates the effects of joule heating ...

Heat Generation from H₂/D₂ Pressurization of Nanoparticles: Simulation of the Experiments on COMSOL Multiphysics®

A. Osouf[1], G. Miley[2], B. Stunkard[3], T. Patel[3], E. Ziehm[2], K. Kyu-Jung[3], A. Krishnamurthy[1]
[1]Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[2]Department of Nuclear, Plasma & Radiological Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[3]University of Illinois at Urbana - Champaign, Urbana, IL, USA

A COMSOL Multiphysics® model of our apparatus has been created in order to simulate the pressurizations of our nanoparticles by Deuterium. Using reference measurements during a cooling process, we calibrated the model so that its thermal aspects reflect the ones of our experimental set up. To reproduce the pressurizations, the following variables are parameters : the location of the heat ...

Simulation of Rarefied Gas Flow in the KATRIN Source

L. Kuckert[1]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany

The KATRIN experiment at the Karlsruhe Institute of Technology (KIT) will measure the neutrino mass on a sub-eV range. Therefore the electron spectrum of the beta decay of Tritium will be detected and compared with a simulated spectrum of the used windowless gaseous Tritium source (WGTS). In the WGTS tritium is injected with 0.33Pa through small orifices in the middle of a 10m long tube with a ...

Optimization of a Rotor Shape for Spherical Actuator with Magnetically Levitating Rotor to Match Octupole Field Distribution

M. Sidz[1], R. Wawrzaszek[1], L. Rossini[2], A. Boletis[3], S. Mingard[3], K. Seweryn[1], E. Onillon[2], M. Strumik[1]
[1]Space Research Centre of PAS, Warsaw, Poland
[2]CSEM Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
[3]Maxon Motor AG, Sachseln, Switzerland

The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution discussed in this work has been proposed and patented by CSEM company. Contrary to conventional ball bearing ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...