Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Coupled Hydro-Mechanical Analysis of Excavation Damaged Zones around an Underground Opening in Sedimentary Rock

H. Abdi[1], E. Evgin[1], M. Fall[1], T.S. Nguyen[2], and G. Su[2]
[1]University of Ottawa, Ottawa, ON, Canada
[2]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

A large amount of research work has been carried out in many countries to determine the viability of radioactive waste disposal in deep geological repositories. It is well known that excavation can cause damage around underground openings. On the other hand, the mechanical damage can influence the stability of the opening and the flow characteristics of the rock mass. In addition, all physical ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

Deformation of Drop-within-Drop System under the Influence of High Intensity Oscillating Electric Field

D. Das[1], R.S. Patil[1], S. Kulkarni[1], V.A. Juvekar[1], and R. Bhattacharya[2]
[1]IIT Bombay, Mumbai, Maharashtra, India
[2]India Atomic Energy Regulatory Board, Mumbai, Maharashtra, India

This paper deals with the simulation study using COMSOL on the deformation of drop-within-drop system in a high intensity oscillating electric field. It consists of a composite drop suspended in a continuous phase. This composite drop has a smaller inner drop suspended within the larger outer drop. The outer drop is made up of another immiscible liquid. A high intensity sinusoidally varying ...

Wind Evaporation On Wetted Surfaces Under Uncertainty Conditions

J.M. Gozalvez-Zafrilla, M.C. Leon-Hidalgo, J. Lora-Garcia, A. Santafe-Moros, and J.C. Garcia-Diaz
Universidad Politecnica de Valencia, Valencia, Spain

Brine disposal from desalination plants placed in inland areas far from sea is an important problem. Evaporation ponds can be used for reducing the waste to solid state but they require huge amounts of land. Evaporation using arrays of wet surfaces can minimize the land requirements. One characteristic of the methods based on natural evaporation is the uncertainty associated to the influent ...

Modeling Bacterial Transport and Removal in a Constructed Wetland System

E. Engström, B. Balfors, and R. Thunvik
Royal Institute of Technology, Stockholm, Sweden

In this study we evaluate transport, retention and subsistence of Escherichia coli (E. coli), a common fecal indicator bacteria, in a model (2x1m) of a constructed wetland. Transport occurs in the unsaturated and saturated zone. Inactivation is accounted for as a kinetic first-order process. Retention is assumed to be dominated by solid-air-water interface straining and is modeled with a kinetic ...

Numerical Modeling of Falling Aluminum Particle Oxidation in Air

A. Davidy
Israel Military Industry, Ramat-Hasharon, Israel

Because of its high enthalpy of combustion, aluminum has been added to energetic materials. In this paper, a two dimension thermal model is developed and assessed to describe the interrelated processes of Aluminum particle oxidation by using the software COMSOL Multiphysics. The thermal model consists of thermal radiation, forced convection and thermal conduction and oxygen diffusion. It is ...

A Coupled Analysis of Heat and Moisture Transfer in Soils

E. Evgin, J. Infante Sedano, and Z. Fu
University of Ottawa
Ottawa, ON
Canada

This paper is a part of a study on energy piles for heating and cooling of buildings. Energy piles are used for two reasons: (1) to transfer structural loads to foundation soils, and (2) to transfer heat from foundation soils to the building for space heating in winter time and for cooling purposes in summer time by transferring heat from the building to the foundation soils. The efficiency of ...

Conjugate Heat Transfer for Wireless Power Amplifier

M. Williamson, S. Khan, and J. Kuntz
Kansas State University
Salina, Kansas

Wireless power transfer is an emerging technology with many potential applications. This technology may be of particular value when remotely controlled in extreme physical conditions. This study explores the ability of the COMSOL software to predict the performance of thermal management systems coupled with a commercially available wireless power amplifier. This study has undertaken the task ...

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent ...

The Role of 1D & 2D Asymmetric Diffusion Layers In Rectification Through Ion-Selective Membranes

W. Booth, J. Schiffbauer, and B. Edwards
West Virginia University
Star City, WV

Ion-selective membranes can be used in lab-on-a-chip devices for various portable applications in this field. These devices can be used as concentrators for analytical chemistry and for micro-scale filtration. Here, a binary aqueous electrolyte solution in a microchannel has a potential bias applied across it and it is driven through an ion-selective membrane. Ion concentration gradients form ...