Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Numerical Simulation of Chamber Design for Pulsed Electric Fields Processing of Wet Olive Pomace - new

N. Varga[1], I. Perales[2], A. Portugal[2]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary
[2]ATEKNEA Solutions Catalonia, Barcelona, Spain

The application of pulsed electric fields (PEF) is well known in the food industry as an advanced technology for mass transfer improvement. A new potential adaptation area of PEF could be extracting a valuable antioxidant called polyphenol from wet olive pomace (WOP) which is a by-product of olive oil production. The modelling includes the PEF effects on the WOP which is flowing through a ...

Modelling of Melt Cast Cooling and Solidification Processes for Explosives

P. Lamy-Bracq[1] and C. Coulouarn[1]
[1]Nexter Munitions, Tarbes, France

A solidification process of casting explosives in shell is studied in this paper. An enthalpy method approach is used to model the solidification process. Both the thermal and mechanical effects are taken into account. An ALE (Arbitrary Lagrangian-Eulerian) method is used to represent the physical deformation due to solidification. Results from the model are verified against experimental ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Hybrid Multiscale Modeling of Corrosion Nanoinhibitors Transport

C. Trenado[1], D. Strauss[1,2], and M. Wittmar[2]
[1]Computational Diagnostics & Biocybernetics Unit, Saarland University Hospital, Homburg, Germany
[2]Leibniz-Institute for New Materials, Saarbrücken, Germany

Progress in coating technology has allowed for the development of free-chromate corrosion inhibitors, which are able to smartly migrate when required. In order to support the coating design, we propose a hybrid mathematical model to study the inhibitor's release by taking into account the thermodynamics and kinetics involved in the corrosion process. The proposed model is ...

Magnetic Particle Buildup Growth on Single Wire in High Gradient Magnetic Separation  

F. Chen
Department of Chemical Engineering, M.I.T., Cambridge, MA, USA

Magnetic fluids containing nano or submicron magnetic particles and their application in food, biological and pharmaceutical systems have recently attracted increasing attention. Magnetic particles can be collected efficiently in magnetizable matrices (e.g. iron wires) in high gradient magnetic separation (HGMS) process. In this work, the dynamic buildup growth process is treated as a moving ...

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

Detection of E.coli Cell using Capacitance Modulation

A.K. Dwivedi, R.M. Patrikar, R.B. Deshmukh, and G. Pendharkar
Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Testing and verification is very important to increase reliability of a system. In water analysis its purity is verified using different test methods. Biosensors are very useful to detect the microorganisms present in water. This paper presents a method to detect E.coli bacteria in water depending upon the capacitance modulation in the presence and absence of E.coli cell, which is simulated in ...

A Biological Gear in the Human Middle Ear

H. Cai, R.P. Jackson, C. Steele, and S. Puria
Stanford University, Stanford, CA, USA

To support high frequency transmission, the mammalian middle ear construction is unique. The middle ear bones are connected through two mobile joints, the malleus-incus joint (MIJ) and the incudostapedial joint (ISJ). These synovial joints, consisting of joint capsule and synovial fluid inside, play an important role in sound transmission. We developed our current FE model using COMSOL that ...

2681 - 2690 of 3390 First | < Previous | Next > | Last