Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analyzing the Performance of Lined and Unlined Simplified Cylindrical Cloaks

J. McGuirk and P. Collins
Air Force Institute of Technology, WPAFB, OH, USA

The performance of simplified cylindrical cloaks with various material parameters was investigated. The performance metric was the overall scattering width of the cloak with various objects in the hidden region. COMSOL was used to simulate three cloaks with different material parameters to determine the total field in the simulation domain. For all cloaks simulated in this effort, a PEC-lined ...

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Transient Conjugate Optical-thermal Fields in Thin Films Irradiated by Moving Sources: A Comparison between Back and Front Treatment

N. Bianco[1], O. Manca[2], and D. Ricci[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A two dimensional instationary analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure on a glass substrate by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. COMSOL Multiphysics 3.4 code has been adopted to solve the combined thermal and electromagnetic problem in order to compare the ...

Blistering of Industrial Floors on Concrete Substrate: The Role of Air Overpressure

P. Devillers[1], S.V. Aher[2], G. Fau[3], B. Tranain[3], and C. Buisson[1]
[1]Centre des Matériaux de Grande Diffusion, Ecole des Mines d’Alès, France
[2]Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
[3]Centre Scientifique et Technique du Bâtiment, Champs sur Marne, France

A three dimensional COMSOL Multiphysics, transient analysis, diffusion model has been adopted to model the transfers of water in the industrial concrete floors. To take into account the different initial saturation levels at the different levels of the slab, the model is divided into three subdomains. The rise of the waterfront is also simulated and the air overpressure thereby developed at the ...

Evaluation of CO2 Leakages From An Aquifer Storage

A. Thoraval[1], R. Farret[2], A. Cherkaoui[2], and P. Gombert[2]
[1]INERIS, Nancy, France
[2]INERIS, Verneuil, France

This paper presents preliminary estimations of CO2 overpressure into the reservoir and CO2 leakage through the caprock and the overburden. A simple, two-phase flow model in porous media based on Darcy’s law was used, in order to explore easily long time periods. The models produced by COMSOL Multiphysics allow sensitivity studies and preliminary evaluations of the relations between CO2 leakage ...

Long Term Performance Of Borehole Heat Exchanger Fields With Groundwater Movement

S. Lazzari, A. Priarone, and E. Zanchini
DIENCA, University of Bologna, Bologna, Italy

A numerical investigation of the long-term performance of double U-tube borehole heat exchanger (BHE) fields, in the case of non-negligible effects of groundwater movement, is performed by means of COMSOL Multiphysics. Two time periodic heat loads, with a period of one year, are studied: Q1, with a partial compensation between winter heating (principal load) and summer cooling; Q2, with no ...

Propagation Of Tsunamis Over Large Areas Using COMSOL

C. Cecioni, and G. Bellotti
University of Roma TRE, DSIC, Rome, Italy

This paper presents a numerical model based on the mild-slope equation (MSE for short) solved using the PDE mode of the software COMSOL Multiphysics suitable to reproduce the propagation of small amplitude tsunamis in the off-shore field. The model solves the governing equations in the frequency domain and allows the reproduction of the frequency dispersion for broad banded spectrum sea states. ...

Coupling COMSOL’s Subsurface Flow Module with Environmental Geochemistry in PHREEQC

L. Wissmeier[1], and D. A.Barry[2]
[1]GIT HydroS Consult GmbH, Freiburg, Germany
[2]EPFL, Lausanne, Switzerland

We present a software tool for simulations of subsurface flow and solute transport in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses PHREEQC as a reaction engine to COMSOL Multiphysics®. The coupling with PHREEQC gives major advantages over COMSOL’s built-in reaction capabilities, i.e., the soil solution is speciated from its element composition ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Optimization of a High-Temperature High-Pressure Direct Wafer Bonding Process for III-V Semiconductors

R. Martin, J. Kozak, K. Anglin, and W. Goodhue
University of Massachusetts Lowell
Lowell, MA

Many optoelectronic devices utilize a heterojunction of a pair semiconducting materials including high-efficiency MEMS devices, solar cells, LEDs, and VCSELs. One fabrication technique which achieves such a device is direct wafer fusion. To optimize the process, COMSOL Multiphysics 4.0 was used to test various geometric configurations of the fixture. 2D and 3D models were created in order ...

3161 - 3170 of 3391 First | < Previous | Next > | Last