Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Small-Scaled de Laval Nozzle for IGLIS Experiment

E. Mogilevskiy[1], R. Ferrer[1], L. Gaffney[1], C. Granados[1], M. Huyse[1], Yu. Kudryavtsev[1], S. Raeder[1], P. Van Duppen[1]
[1]KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

De Laval nozzles are used in supersonic aerodynamical tubes and engines. They are also employed for the production of cold gas jets to be used in chemical reactions studies. Recently, cold gas jets have been proposed of In-Gas Laser ionization Spectroscopy (IGLIS) The nozzle has a converging and a diverging part with a throat between them. High gas pressure and temperature, and low velocity ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

A MEMS Condenser Microphone for Consumer Applications

S. L. Pinjare, V. S. Nagaraj, S. N. Savitha, S. Kesari, M. S. Sagar, and K. R. Roshan
Nitte Meenakshi Institute of Technology

The MEMS microphone is also called microphone chip or silicon microphone. The pressure sensitive diaphragm is etched directly into a silicon chip by MEMS techniques and is usually accompanied with integrated preamplifier. Most MEMS microphones are variants of the condenser microphone design. The MEMS microphone has been successfully fabricated and tested in an anechoic chamber. The microphone ...

Surface to Surface Radiation Benchmarks

J. v. Schijndel [1], R. v. Eck [1], M. Klep [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

The paper presents a student guide on how to implement surface to surface radiation within COMSOL Multiphysics® software for case studies found within the built environment. We included four benchmarks: (1) Radiation in a triangular cavity with infinite length; (2) Radiation between two infinitely long rectangular plates; (3) Radiation in a three dimensional rectangular enclosure; (4) Radiation ...

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

Dispersion Analysis in Coaxial Cables at High Frequencies

S. C. Hegde[1]
[1]VIT University, Vellore, Tamil Nadu, India

The coaxial cable is one of the most commonly used bandwidth limited signal transmission line.Dispersion is a signal distortion phenomenon which arises due to frequency dependence of phase velocity of signal components. This phenomenon was explained through time domain approach by studying time taken by signals of various frequencies to propagate through the cable, which eventually may cause ...

Models for Simulation Based Selection of 3D Multilayered Graphene Biosensors

E. Lacatus [1], G. C. Alecu [1], A. Tudor [1],
[1] Politehnica University of Bucharest, București, Romania

At the forefront of a new generation of sensors graphene and graphene composite materials are intensively studied for medical and biosensing applications. The outstanding electrical, mechanical and quantum properties of graphene make them a promising material solution to overlap the existing gap between biological and non-biological systems into a continuum like-viscoelastic integrated model. ...