See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
RF and Microwave Engineeringx

Finite Element Modeling of Electromagnetic Scattering for Microwave Breast Cancer Detection

R. Firoozabadi[1], and E.L. Miller[2]
[1]Airvana Inc., Chelmsford, MA, USA
[2]Tufts University, Medford, MA, USA

In this paper, COMSOL Multiphysics software is utilized as a finite element forward solver to obtain the electromagnetic fields at the receiving antennas while the breast is illuminated by one antenna in the array. Geometry consists of coronal slices of the 3-D breast. Simulations are ... Read More

Analysis and Optimization of Dual Arm, Center Excited, Surface Micro-machined Archimedean Spiral Antenna with Improved Wideband Characterestics

G. Miranda[1], N. S. Pamidighantam[1], R. V. Iyer[2], S. Shukla[3], P. Suresh[3], and P. M. Soundarajan[3]
[1]Department of Telecommunications, PESIT, Bangalore,Karnataka,India
[2]Department of Science and Humanities, PESIT, Bangalore,Karnataka,India

An Archimedean Spiral antenna is the common frequency independent antenna which have very large bandwidth. Archimedean Spiral antenna are circularly polarized and typically have radiation patterns with peaks perpendicular to the plane of the spiral. Micro-machining techniques improves ... Read More

Characterization of an Open GTEM Cell with the COMSOL Multiphysics® Software

A. De Vita [1], R. Gaffoglio [2], B. Sacco [1],
[1] RAI - Radiotelevisione Italiana, Italy
[2] Polito, Italy

Introduction: The Gigahertz Transverse Electromagnetic (GTEM) cell is a fundamental tool for calibration purposes and for studies on Electromagnetic Compatibility (EMC), being able to emulate an incident plane wave (TEM mode) on equipment under test in the GHz frequency band. This ... Read More

HIIPER Space Propulsion Simulation Using Plasma Module

Z.Chen [1], E. Ziehm [1], G. H. Miley [1],
[1] University of Illinois at Urbana-Champaign, Urbana, IL, USA

The Helicon Injected Inertial Plasma Electrostatic Rocket (HIIPER) is an electric space propulsion concept to generate denser ion and electron beams using inertial electrostatic confinement (IEC) fusion theory and helicon source. Helicon source is employed to generate the plasma and the ... Read More

PIR Sensor Modeling and Simulation Using COMSOL Multiphysics® and its Ray Optics Module

M. Maaspuro [1],
[1] School of Electrical Engineering, Aalto University, Finland

PIR (Passive Infrared) sensor is the most widely used motion sensor for occupancy detection in building automation applications. Normally, only the binary information indicating presence or absence is used. However, an advanced analysis of the PIR sensor analog signal can results in more ... Read More

Elucidating the Mechanisms of Charge and Temperature Modulated Ionic Transport in Nanochannels

G. Zhang [1], Y. Zhao [1],
[1] Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA

The transport of fluid through nanochannels is of importance in a variety of technological applications, including biological sensing, energy storage and conversion, chemical separation and many others. Synthetic nanofluidic architectures that mimic the gating functions of biological ion ... Read More

Transient RF Heating of a Conductive Implant: Coupled Electromagnetic/Thermal Simulation and Experimental Validation

A. Leewood[1], D. Gross[1], J. Crompton[2], S. Yushanov[2], O. Simonetti[3], Y. Ding[3]
[1] MED Institute Inc., West Lafayette, IN, USA
[2] AltaSim Technologies, Columbus, OH, USA
[3] Ohio State University, Columbus, OH, USA

The purpose of this work was to establish a reliable radio frequency (RF) heating simulation which directly provides transient temperatures for medical devices with high geometric fidelity. These temporal results of localized temperatures can be used to determine conditions for safety of ... Read More

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in ... Read More

Electromagnetic Analysis of Flat Spiral Coils Fed by a Current Pulse at Medium Frequency

O. Maloberti [1], P. Sansen [1], O. Mansouri [1], D. Jouaffre [2], D. Haye [2],
[1] ESIEE Amiens, France
[2] PFT Innovaltech, France

Cylindrical single or multi-turns coils and Spiral Flat multi turn coils are used in pulsed magnetic technologies for which both magneto-harmonic and transient magnetic analysis are required. The first are mainly used for tubular geometries and the second are preferred for sufficiently ... Read More

COMSOL® Simulation for Scanning Microwave Microscopic Experiments

T. Le Quang [1], D. Vasyukov [1], A. Buchter [1], J. Hoffmann [1], M. Zeier [1],
[1] Eidgenössisches Institut für Metrologie (METAS), Switzerland

In the EMPIR project ADVENT the Scanning Microwave Microscopy (SMM) is investigated. The SMM is a still rather novel member of the family of scanning probe microscope. It has attracted a lot of attention recently, because this instrument can be used to characterize various electrical ... Read More