Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Stability Analysis of ALE-Methods for Advection-Diffusion Problems

A. Weddemann, and V. Thümmler
Bielefeld University, Germany

ALE-methods are frequently used to solve systems of partial differential equations (PDEs) on moving domains. The main idea of these methods is to incorporate the time evolution of the domain into the equations. However, the motion of the domain with respect to time induces convective fluxes in the resulting equations. These can lead to stability problems of the numerical method if they become ...

The Design of a Multilayer Planar Transformer for DC/DC Converter with a Resonant Inverter - new

M. Puskarczyk[1], R. Jez [1]
[1]ABB Corporate Research Center, Krakow, Poland

Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis (based on mathematical formulas) can be uncertain. The applied FEM method of the analysis can be a solution to ...

Linking The Dimensions

A. Helfrich-Schkarbanenko[1], M. Mitschele[2], S. Ritterbusch[1], and V. Heuveline[1]
[1]Engineering Mathematics and Computing Lab (EMCL), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
[2]Institute for Analysis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

We consider a 3D boundary value problem arising in electrostatics. The potential is stimulated by current sources placed on a cross-section S of the domain. In many applications it is sufficient to know the potential in S. So, one is interested in an appropriate 2D model taking into account that the solution depends on the dimension of the domain. The idea is to find a corresponding 2D ...

Residence Time Distribution for Tubular Reactors - new

L. R. de Souza Jr.[1], L. Lorenz[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

In the core of Chemical Engineering is the reactor design that includes most of all scientific disciplines. The reactors, in general, are treated ideally. Unfortunately, it is observed in the real world a very different behavior from that expected. Thus, to characterize nonideal reactors is used, among others, residence time distribution function E(t). The aim of this present work is to ...

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, we consider a system of two time-dependent non-linear PDEs from mathematical biology that couples an ...

Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems

E. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, Michigan, USA

This paper is focused on topology optimization of heat transfer and fluid flow systems for multiphysics objectives. Specifically, COMSOL Multiphysics software is coupled with a method of moving asymptotes optimizer in a custom COMSOL / MATLAB script. Various physical process including conduction, convection-diffusion, and Navier-Stokes flow are considered. To illustrate the method, a standard ...

Material Characterization Method Development: From Education to Design Optimization

C. Morgan[1], N. Kenkare[1], M. Williams[2], A. Peterson[2], and D. Williams[2]
[1]Alcon Eye Care Division of Novartis R&D, Duluth, GA
[2]Alcon Eye Care Division of Novartis R&D and Georgia Institute of Technology Co-op Program, GA

Introduction of silicone hydrogel contact lens materials provided products of unprecedented capability to deliver oxygen to the eye during wear. One additional material characteristic of interest is the material’s permeability to ions. This paper discusses descriptive tools and optimization of an impedance method of characterizing ion permeability. A physical model of conductive paper with ...

Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation

A. K. Namdeo [1], H. B. Nemade [1],
[1] Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents a method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method (FEM) using COMSOL Multiphysics software. A one port SAW resonator consists of large number of periodic interdigital transducer (IDT) electrodes fabricated on the surface of a piezoelectric substrate. A ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

1 - 10 of 223 First | < Previous | Next > | Last