Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to ...

Expert System for Synchronous Machines Based on COMSOL Multiphysics

G. E. Stebner, and C. Hartwig
Ostfalia University
Wolfenbüttel, Germany

Even though the researches in synchronous machines are advanced, the practical design still is a problem because of the complex interaction between several design parameters. The project “EaSync” at the Ostfalia University focuses on the bundling of machine models using COMSOL Multiphysics® to create a semi-automatic engineering process. The project is based on student research projects and a ...

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient pressure to exchange materials. This is a two way process, at which nutrients, Oxygen, and other ...

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, materials science and electrodynamics for the Laundry Category. Venkataraghavan also had a stint with Unilever Technology ...

Definition of Optimization Problem for Electromagnetic Linear Actuator

P. Piskur[1], W. Tarnowski[1], and K. Just[1]

[1]Koszalin Technical University, Koszalin, Poland

In this paper a poly-optimization of the design of the electromechanical actuator is presented. The shape of the actuator is defined by the decision variables. The number of decision variables under consideration is up to ten but in the next step while the multi-coils system will be analyzed the number of decision variables will increase up to hundred, so the genetic algorithm has been used. The ...

Numerical Study of an LTD Stirling Engine with Porous Regenerator

N. Martaj[1], P. Rochelle[1][2], L. Grosu[1], R. Bennacer[3], and S. Savarese[4]
[1]Universitè de Paris, Paris, France
[2]Institut Jean Le Rond d'Alembert, Université Paris 6
[3]Laboratoire LEEVAM «Environnement, Energétique, Valorisation, Matériaux», Universitéde Cergy-Pontoise
[4]COMSOL France, 5 pl. R Schuman, 38000 Grenoble

The alternative engines of Stirling type, are engines running on "hot air", using both an external heat source and regeneration. They should be considered as an alternative for the effective conversion of renewable energy sources into work, with their theoretical yield equal to the theoretical Carnot limit. The output efficiency and the power of these engines are strongly related to the ...

Estimativa do Fluxo de Calor em uma Ferramenta de Corte Durante um Processo de Usinagem com o Uso do Software COMSOL Multiphysics® e de Técnicas de Problemas Inversos - new

R. F. Brito[1], S. R. de Carvalho[2], S. M. M. de L. e Silva[1]
[1]Federal University of Itajubá - UNIFEI, Itabira, Minas Gerais, Brasil
[2]Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brasil

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose of the present work is to present the improvements performed in relation to the authors’ previous work to develop the complex geometry of a machining process. Specification function, which is an ...

Simulation Methods on Virtual Laboratories for Characterization of Functionalized Nanostructures

E. Lacatus [1], G. C. Alecu [2], A. Tudor [3], M. Sopronyi [4],
[1] Polytechnic University of Bucharest, Bucharest, Romania
[2] Groupe Renault, Bucharest, Romania
[3] STAR STORAGE,Bucharest, Romania
[4] National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
[5] Polytechnic University of Bucharest, Bucharest, Romania

Within the emerging integrative concept of IoT (Internet of Things) and IIoT (Industrial Internet of Things) that are paving the way towards Digital Manufacturing Technologies and the next paradigm shift of Industry 4.0, R&D Laboratories have to be at the forefront of the transformation. Using remotely the existing top R&D Laboratories facilities would become soon common practice, but for now ...

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Optimization of Thermal Properties Identification of Complex Thin Films Using MATLAB® and COMSOL Multiphysics

N. Semmar[1], B. Wane[1]
[1]GREMI, UMR7344, CNRS-University of Orleans, Orléans Cedex 2, France

The importance of laser processing and thermal properties investigation of bulk materials and thin layers is still increasing. For thermal properties investigation many experimental systems were developed based on the photothermal effect. One of typical ways is to induce a rapid surface temperature increase is to use a pulsed laser beam, create a simplified model of this interaction, and compare ...