Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Geometric Multigrid Solver and Experimental Validation in Laser Surface Remelting

M. M. Pariona [1], F. de Oliveira [1],
[1] State University of Ponta Grossa, PR, Brazil

INTRODUCTION The purpose of this work is to verify the effect of Multigrid method on the CPU time for the resolution of the heat transfer model, based on the Finite Element Method (FEM), in order to simulate the laser surface remelting (LSR) of the Al–1.5 wt.% Fe alloy. To accelerate the convergence of Single grid methods, Multigrid method (MG) was employed in order to reduce the CPU time. In ...

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables

S. Curcio[1] and M. Aversa[1]
[1]Department of Engineering Modeling, University of Calabria, Arcavacata di Rende, CS, Italy

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in food drying process. The attention has been focused on the simultaneous transfer of momentum, heat and mass occurring in a convective drier where hot dry air flows, in turbulent conditions, around the food sample. The proposed model does not rely on the specification of ...

Comparing Different Approaches for Moisture Transfer Inside Constructions with Air Gaps

L. Nespoli[1], M. Bianchi Janetti[2], F. Ochs[2]
[1]Politecnico di Milano, Milan, Italy
[2]University of Innsbruck, Innsbruck, Austria

A model for the conjugate simulation of heat and moisture transfer inside porous materials and fluid domains is implemented in COMSOL Multiphysics®. The results of this model are compared with those obtained through a simplified approach: the line-source approach. The models are both validated with experimental data and with numerical results from other authors. On the one hand the conjugate ...

Natural Refrigeration System Design

A. Prasad [1], O. K. Sacks [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment a Reactive Muffler is developed and validated numerically compared to traditional built and test process.

Steps for the Optimization of Pipe and Tubing Extrusion Dies

J.R. Puentes[1], T.A. Osswald[1], S. Schick[2], J. Berg[2]
[1]Polymer Engineering Center, University of Wisconsin, Madison, WI, USA
[2]TEEL Plastics, Baraboo, WI, USA

The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there are areas of stagnation and recirculation of the melt flow, resulting in greater residence times, one of the ...

Development of COMSOL-Based Applications for Heavy Oil Reservoir Modeling

S. Cambon [1], I. Bogdanov [1]
[1]Open & Experimental Center for Heavy Oil (CHLOE), University of Pau, Pau, France

The efficiency and environmental impact of oil production become a principal challenge of energy producing companies. The improvement of existing and development of novel methods are often feasible within either a “new” physical framework (from the viewpoint of oil reservoir applications) or a non-trivial combination of “known” phenomena. Last fifty years the dedicated reservoir simulators have ...

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is solved to simulate vacuum drying of oakwood. A two scale model describes the physics of wood-water relations ...

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...

Modeling of Straight Jet Dynamics in Electrospinning Process

R. Pandya [1], A. Kumar [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Electrospinning is a process where high voltage is applied to produce polymer fibers of nanoscale diameter. Various polymers have been used for this process in molten form or as a solution with an appropriate solvent such as glycerol. The melt solidifies while the solvent evaporates to produce fibers. The fibers produced have properties such as high surface to volume ratio and a molecular ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...